
TESI DI DOTTORATO
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Chapter 1

Introduction

Robotic Surgery has completely changed surgical procedures. Enhanced dex-
terity, ergonomics, motion scaling, and tremor filtering, are well-known ad-
vantages introduced with respect to classical laparoscopy. In the past decade,
robots played a fundamental role in MIRS in which the da Vinci robotic sys-
tem (Intuitive Surgical Inc., Sunnyvale, CA) is the most widely used system
for robot-assisted laparoscopic procedures. Robots also have great potential-
ity in Microsurgical Robotic applications, where human limits are crucial and
surgical sub-millimetric gestures could have enormous benefits with motion
scaling and tremor compensation. Nevertheless, surgical robots still lack ad-
vanced assistive control features that could notably support surgeon’s activity
and perform surgical tasks in autonomy for a high quality of intervention. In
this scenario, images are the main feedback the surgeon can use to correctly
operate in the surgical site. Therefore, in view of the increasing autonomy
in surgical robotics, vision-based techniques take a leading role in surgical
scenarios. Moreover, a large number of surgical tasks could benefit from the
application of advanced control techniques, allowing the surgeon to work un-
der less stressful conditions and performing the surgical procedures with more
accuracy and safety.

1.1 Thesis Contribution & Overview

The thesis starts from the topics of development of control strategies and en-
hanced visual perception, analyzing the most advanced state-of-art approaches
in surgical robotics. Then, the work addresses the problem to provide surgi-
cal robots the ability to perform complex tasks helping the surgeon to skillfully

1



2 CHAPTER 1. INTRODUCTION

manipulate the system and accomplish the above requirements. The works pre-
sented in this thesis propose high-quality solutions to enhance specific tasks or
entire surgical procedures. The thesis introduces innovative control strategies
and advanced computer vision techniques to provide adequate information for
control. Each approach follows the steps:

• definition of the specific surgical problem;

• description of the state-of-the-art solutions;

• definition of advanced control strategy to solve the problem;

• enhancement of the robot perception phase using computer vision tech-
niques;

• experimental validation of the method on surgical robots.

An increase in safety and a reduction in mental workload is achieved
through the introduction of active constraints, that can prevent the surgical tool
from crossing a forbidden region and similarly generate constrained motion to
guide the surgeon on a specific path, or to accomplish robotic autonomous
tasks. This leads to the development of a vision-based method for robot-aided
dissection procedure allowing the control algorithm to autonomously adapt
to environmental changes during the surgical intervention through the use of
stereo images of the surgical site. Computer vision is exploited to define a
surgical tools collision avoidance method that uses FRVFs by rendering a re-
pulsive force to the surgeon. Advanced control techniques based on an opti-
mization approach are developed, allowing multiple tasks execution with task
definition encoded utilizing CBFs and enhancing haptic-guided teleoperation
system during suturing procedures. The proposed methods are tested on a
different robotic platform involving dVRK and a new microsurgical robotic
platform. Finally, the integration of new sensors and instruments in surgical
robots are considered, including a multi-functional tool for dexterous tissues
manipulation and different visual sensing technologies.

1.2 Thesis Structure

This Section gives a brief overview of the thesis. Chapter 1 contains the intro-
duction of the presented thesis, underlying the robotic surgery background and
the obtained achievements with the paper production based on the work devel-
oped during the Ph.D. studies. Chapter 2 presents an overview of the robotic
use in surgical applications, emphasizing the benefits and safety given to MIS
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and Microsurgery. Moreover, a review of the state-of-the-art techniques in ad-
vanced robot control and computer vision for robotic perception is provided in
this chapter. Ultimately, the robotic platforms and the simulation environments
used in this thesis are also described.

The scientific contribution is presented in the next chapters. A novel
robotic solution for polyp dissection surgical procedures is proposed in Chap-
ter 3. Colorectal polyp dissection is a delicate surgical procedure, which re-
quires very accurate detection of the region of interest and precise cutting with
adequate safety margins. The proposed method assists the surgeon during
polyp dissection utilizing haptic shared control technique and basic computer
vision approach for polyp identification.

A preliminary study on a vision-based method for suturing needle tracking
is illustrated in Chapter 4. Suturing is a complex and tiring procedure and joint
limits and singularities are common problems in this robot-assisted procedure,
forcing the surgeon to continuously re-grasp the needle causing high operator
cognitive load and fatigue. The chapter proposes a vision-based tracking of
suturing needle to define the grasping pose that optimizes the cost of robot joint
limits and singularities. Then, a haptic shared control approach is developed to
guide the surgeon towards an optimal needle grasping configuration, allowing
executing continuous suturing trajectories avoiding tedious interruptions.

A surgical tool collision avoidance method is described in Chapter 5. Dur-
ing the execution of robotic-aided surgical procedures, the tools can collide
and create serious damage to human tissues. The proposed method helps the
surgeon to avoid surgical tool clashing, by rendering a repulsive force. This
work uses a marker-less surgical tool tracking, based on a Machine Learning
approach that couples vision and robot kinematics information.

Chapter 6 introduces a framework that allows the execution of multiple
surgical tasks simultaneously. A generic surgical procedure is divided into a
series of sub-tasks that can be executed at the same time with different prior-
ities. The method uses an optimization-based approach with tasks definition
and execution achieved through a novel control technique, known as CBFs.
The framework strongly enhances teleoperation control input integrated with
a haptic feedback method on the robot master side, and it can also be adopted
for autonomous surgical task execution. Moreover, this chapter also gives a
brief introduction of future works. Ultimately, Chapter 7 presents an overview
of the entire thesis.
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1.3 Thesis Publications

The works presented in this thesis is has been published in the following arti-
cles:

• R. Moccia and F. Ficuciello ”Multiple Tasks Execution using Control
Barrier Functions in Surgical Robotics”, in submission for IEEE Trans-
actions on Robotics, September 2021.

• R. Moccia, C. Iacono, B. Siciliano, F. Ficuciello, ”Vision-based
Dynamic Virtual Fixtures for Tools Collision Avoidance in Robotic
Surgery”, IEEE Robotics and Automation Letters and presented at IEEE
International Conference on Robotics and Automation 2020, vol. 5, no.
2, pp. 1650-1655, June 2020.

• H. Liu, M. Selvaggio, P. Ferrentino, R. Moccia, S. Pirozzi, U. Bracale, F.
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• M. Selvaggio, A. M. Ghalamzan E., R. Moccia, F. Ficuciello and B. Si-
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tional Conference on Intelligent Robots and Systems, Macau, China, pp.
7734-7939, November 2019.

• C. Iacono, R. Moccia, B. Siciliano, F. Ficuciello, ”Forbidden Region
Virtual Fixtures for Surgical Tools Collision Avoidance”, Proc. Insti-
tute for Robotics and Intelligent Machine the Conference, Rome, Italy,
October 18-20, 2020.
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Chapter 2

State-of-art in Robotic Surgery

This chapter presents an overview of the robotic methodologies developed
since their introduction in surgical applications. The goal is to provide ba-
sic information on novel surgical robotic platforms, advanced control algo-
rithms, and vision-assisted applications. Section 2.1 introduces the use of
robots in surgical procedures, underlining the benefits and safety given to MIS
and Microsurgery. Section 2.2 provides an overview of the advanced control
techniques developed for surgical applications empathizing the use of Active
Constraints (or VFs), i.e an overlay that can guide the surgeon during the pro-
cedure or avoid conditions that can compromise safety. Section 2.3 contains
a description of the computer-vision techniques used in the surgical scenario.
Ultimately, Section 2.4 describes the robotic platforms and the simulation en-
vironments used in this thesis.

2.1 Robotics in Surgical Procedures

The first method that comes to mind thinking about surgery, is traditional open
surgery, where a surgeon operates with handheld instruments through a large
cut (incision). For this reason since its introduction, MIS had a significant im-
pact on surgical procedures. This kind of method includes LS, a surgical tech-
nique in which short cannulae, containing surgical instruments, are inserted
into the abdomen through small (typically less than 1 cm) incisions. LS is
most commonly used in gynecology, gastroenterology, and urology, showing
excellent results in difficult treatments of gastrointestinal diseases such as rec-
tal cancer [4] and in particular in colorectal polypectomy [5]. The application
of this technique offers several advantages to the patient, like decreased post-
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operative pain, shorter hospitalization, reduced risk of complication, low blood
loss and transfusions, and minimal scarring. Nonetheless, LS still presents im-
portant limitations, mainly due to reduced visual and haptic perceptions, that
can compromise the quality of intervention and create significant challenges
on this kind of surgery. Reduced depth perception induced by the use of 2D
monitors can lead to weak hand-eye coordination. At the same time, one of
the major issues in LS is tissue damage mainly caused by the use of excessive
force involuntary applied by the surgeon.

As previously exposed, MIS encompasses all surgical procedures that re-
duce the size of the incision in patient’s body. Among those, imaging tech-
niques are crucial, starting from a clear view of the surgical site usually guar-
anteed by the use of an endoscope. Several surgical specialties require imaging
capabilities that cannot be satisfied by the use of an endoscope and required
optical magnification ensured by the use of an operating microscope. Starting
from this assumption, microsurgery is currently used in many surgical proce-
dures, such as general surgery, ophthalmology, orthopedic surgery, gyneco-
logical surgery, otolaryngology, neurosurgery, oral and maxillofacial surgery,
plastic surgery, podiatric surgery, and pediatric surgery. Specifically, micro-
surgery is usually adopted to perform reconstructive procedures, that are im-
possible to realize with traditional surgery. In particular, microvascular anas-
tomosis, the suturing of blood vessels and nerves whose diameter is less than
3 mm (typically 1 mm), plays a fundamental role in these types of procedures,
allowing transfer of tissue from one part to another and re-attachment of sev-
ered parts [6]. In general, microsurgery operates on very small structures with
miniaturized instruments, that are small enough to accurately grab and ma-
nipulate tissue. The biggest limitation in microsurgery is represented by the
absence of movement scaling, limiting the microsurgical technique by the mo-
tor abilities of the human body. Moreover, physiological tremor is present in
all human beings, which is normally damped holding the instrument as close to
the tip as possible, but any situation demanding an increased undamped instru-
ment will result in higher tremor amplitude. As in MIS, the use of excessive
force applied by the surgeon can deform the object in the instrument’s jaw,
creating tissue damage.

Since the early 2000s, the use of medical robots completely changed
surgery, significantly improving surgeon’s technical capabilities and tran-
scending human sensory-motor limits. Robotic systems are adopted in many
surgical fields, as shown in Fig. 2.1, with high adoption on gastrenterology and
urological operations [1]. The robots improve the accuracy of tissue manipu-



8 CHAPTER 2. STATE-OF-ART IN ROBOTIC SURGERY

Figure 2.1: Overview of medical robots used for clinical applications, from ”Au-
tonomy in Surgical Robotics” [1]: (a) CyberKnife M6, Accuray; (b) neuromate,
Renishaw; (c) ROSA ONE, Zimmer Biomet; (d) Magellan, Hansen Medical; (e)
Monarch, Auris Health; (f) Niobe, Stereotaxis; (g) Renaissance, Mazor Robotics; (h)
Mako, Stryker; (i) Senhance, TransEnterix; (j) da Vinci Xi, Intuitive Surgical; (k);
AquaBeam, PROCEPT BioRobotics; (l); SPORT, Titan Medical; (m) Flex Robotic
System, Medrobotics; and (n) da Vinci SP, Intuitive Surgical.

lation tasks and the quality of surgical techniques, thus improving results and
reducing the need for revision surgery. The benefits introduced by medical
robots, compared to traditional LS, include a high level of dexterity, motion
scaling, elevated precision, high-definition and magnified 3D images, which
allow for increased accuracy and vision inside the body.

There are different surgical robotic platforms commonly used to substi-
tute laparoscopic instruments in many clinical procedures for MIRS. The da
Vinci®robotic system is the most widely used robotic system for robot-assisted
laparoscopic procedures. The da Vinci®platform on the market are: (i) the da
Vinci®Xi that is the most advanced platform from Intuitive Surgical, shown
in Fig. 2.2; (ii) the da Vinci®X which has the same arm architecture of da
Vinci®Xi with modular components; (iii) da Vinci®SP that is a surgical plat-
form designed for single-port access with a single-arm delivering three multi-
jointed instruments. The da Vinci®robotic platform is a teleoperated robot,
composed by a surgical console, a patient-side cart and a vision cart. The sur-

https://www.intuitive.com/en-us/products-and-services/da-vinci/systems
https://www.intuitive.com/en-us/products-and-services/da-vinci/systems
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Figure 2.2: da Vinci Xi Surgical System.

gical console is located outside the sterile site, and is controlled by the surgeon
through two master controllers and pedals. A 3D endoscope offers a view,
processed by the vision cart, of the surgical site that is provided to the surgeon
through a stereo visor in which the tips of the instruments are aligned with the
surgeon’s hands that grasp the master controllers. Ultimately, the patient-side
is the operative part of the system that is physically in contact with the patient.
It consists of four arms holding instruments and endoscope, in which each arm
has the EndoWrist®tools with a diameter of 8 mm and about 60 cm long. The
Endowrist gives freedom of movement in seven axis and rotation of ∼ 360◦,
and a vast range of robotic instruments can be used including needle holders,
electrocautery forceps, cold forceps, grasping forceps and bipolar dissectors.

Microsurgical procedures imply steps that are entirely different than the
corresponding steps in laparoscopy. Microvascular anastomosis requires a
specific sequence of actions to correctly operate and an accurate knowledge
of anatomy is required. The procedure implies the manipulation of small
blood vessels, which need to be clamped in their extremities to stop the blood
flow and different sizes of vessels diameters need to be considered. Robotic
surgery must consider these different procedures to properly develop the mo-
tion control system of the robot since the typical movements performed by
the robotic tools of da Vinci®Robot could not be replicated in microsurgery.
Nowadays, the creation of RAMS platforms is still under development; how-
ever, there are novel systems suitable for teleoperated open microsurgery. A
clinically available surgical robot is MUSA™ (Microsure, Eindhoven, Neder-
land), assisting open microsurgery. The system presents the traditional ben-
efits of teleoperated robots as miniaturizing hand movements and reducing
tremors. One of the advanced surgical robot for complex microsurgical proce-

http://microsure.nl/
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(a) (b)

Figure 2.3: (a) Symani®Surgical System; (b) NanoWrist®robotic microinstruments.

dures is Symani®Surgical System (Medical Microinstruments (MMI) S.p.A,
Italy), shown in Fig. 2.3a. Symani®is a teleoperated robotic system com-
posed of a mobile platform consisting of an articulated structure with two
robotic arms, that is positioned on the anatomical region. The system fea-
tures a 7− 20X motion scaling with tremor filtration and allows manipulating
a NanoWrist®robotic microinstrument, a miniaturized tool with 3 mm shaft
that represents the most innovative part of the system itself (Fig. 2.3b). The
master console consists of a surgical chair, two stick manipulators enabled by
a foot pedal, and a 3D visualizer.

Despite the improvements, the presented robotic systems still show some
limitations that have not yet been overcome. A recent study classifies surgical
robots into six stages based on the level of autonomy [2] (Fig. 2.4):

• Level 0: no autonomy. The robot is teleoperated and responds to the
surgeon who performs all tasks from monitoring to decision making.

• Level 1: robot assistance. The robot mechanically or virtually interacts
with the surgeon to guide him/her during a task. This category includes
haptic guidance and active constraints (or VFs) support;

• Level 2: task autonomy. The robot performs specific tasks in an au-
tonomous mode based on the surgeon’s specifications that maintains a
discrete control rather than a continuous control on the system;

https://www.mmimicro.com/
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Figure 2.4: Levels of autonomy for Surgical Robots, from ”Medical robotics-
Regulatory, ethical, and legal considerations for increasing levels of autonomy” [2].

• Level 3: conditional autonomy. The robot can autonomously plan and
execute specific task strategies the surgeon can select and approve;

• Level 4: high autonomy. The robot plans, executes, and makes deci-
sions, while the surgeon is only responsible for supervising the surgical
operation;

• Level 5: full autonomy. The robot performs the surgical procedure and
no human is needed.

A vast amount of literature is available at Level 0, teleoperated platforms
previously exposed in this section belong to this level, where no decision mak-
ing is conferred to the machines and enhancements in the process automation
are limited to tremor filtering, motion scaling, and stereoscopic vision. Gener-
ally, platforms at this level are not equipped with any system to give the sur-
geon the sense of touch or any force feedback. Level 1 and Level 2 represent
a crucial step in technology development, including important surgical assis-
tance while the human is still required to be constantly in control of the system,
as needed in the unstructured clinical environment. On the contrary, Level 3
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and Level 4 exhibit higher autonomy and limit the user intervention, which re-
quires a highly structured environment and consequently advanced perception
capabilities. For these reasons, no robotic platform has reached a level of full
automation as expressed in Level 5. The work developed in this thesis tried
to propose novel control strategies and computer vision algorithms to reduce
the surgeon’s physical-mental workload and enhance surgical operation qual-
ity, starting from Level 0 and moving toward Level 5. In the next sections, an
overview of the related works in robotic surgery is given. In detail, the most
advanced control algorithms developed for minimally invasive robotic surgery
and microsurgery, related to the different levels of autonomy, are summarized
in Sect. 2.2. In Sect. 2.3 visual perception for surgical environment charac-
terization is reviewed. Section 2.4 presents the robotic hardware and software
used to test the advanced control method developed in this thesis.

2.2 Control Algorithms in Robotic Surgery

As well-known from literature, the main characteristic of a robotic system is
the ability to couple complex information detected from the environment to
action in order to achieve a specific task [7]. Surgical procedures are mainly
composed by very difficult tasks in a highly unstructured environment, that
makes even basic process a complicated assignment. This aspect influences the
choice of the level of autonomy for the development of technical innovations
in surgical robotics.

The clinical site represents a good example of a safety-critical environ-
ment, pushing for the development of a telerobotic platform that prevents the
user to physically interact with the environment itself and introduces an en-
hancement to transcend human limits. As presented in Sect. 2.1, the first
robotic platforms introduced in surgery are represented by teleoperated robots.
This type of device allows the development of different control architectures,
related to the level of autonomy, grouped into three categories: direct con-
trol, supervisory control, shared control [8]. Direct control belongs to robotic
systems at Level 0 of autonomy, which are directly controlled by the surgeon
through a master interface, implying that the only implemented control algo-
rithms regard the tremor filtering and motion scaling, which represent a great
improvement compared to open surgery [9, 10]. In supervisory control, user
commands and feedback occur at a higher level and the connection is more
relaxed and the slave has to rely on stronger local autonomy to refine and ex-
ecute tasks. The control architecture may incorporate sensory feedback to the
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user in a bilateral configuration. If the slave motion is controlled by a combi-
nation of direct user commands and local sensory feedback or autonomy, the
architecture is denoted as shared control [11], relying on Level 1 and Level 2
of autonomy. First robotic surgery applications of shared control techniques
have been proposed to compensate for beating heart movements, overlaying
sensed heart motion onto surgeon commands allowing them to operate on the
stabilized patient [12].

A special application of shared control is the use of VFs, a virtual overlay
that can guide the surgeon during the procedure or avoid conditions that can
compromise safety. VFs can be classified into two categories: FRVFs, suitable
for simulating barriers around forbidden regions, and GVFs, showing attrac-
tive behavior pulling the robot end-effector towards the desired path. The VFs
use on teleoperated robots is often coupled to haptic feedback or guidance, in
which the fixtures provide active assistance to the user by force rendering at
the master-side. The first author to have introduced VFs was Rosenberg in his
works [13] and an extensive review about it can be found in [14]. Moreover,
these shared control techniques represent a suitable instrument for high-quality
surgical applications [15]. Recently, many authors have considered VFs use
in shared control teleoperation, and multiple works were presented to intro-
duce active constraint in surgical robotics for task and safety accomplishments.
In [16], authors explored the application of VFs for MIS procedures, where the
tool is inserted in the patient through a fulcrum. Here, a key issue is to render
to the surgeon forces that are virtually applied at the instrument distal tip, while
the robot is physically attached to the instrument proximal handle. Selvaggio
et al. propose on-line VFs generation and adaptation guiding the surgeon dur-
ing procedures [17]. A large number of works used VFs implementations to
solve a specific sub-task, i.e to avoid surgical tool collision, simultaneously
offering assistance for high precision movements in geometrically complex
environments [18, 19]. Dynamic active constraints are modeled in real-time to
autonomously adapt to tissue deformation and anatomic structure in [20]. This
method is particularly suitable for hyper-redundant and flexible robots that are
gradually introduced in robotic surgery.

Advanced control laws developed on surgical robots increasingly take ad-
vantage of the application of constrained optimization. The creation of VFs
can be achieved using QP with specific non-linear constraints definition. The
authors in [21], introduced a new teleoperated system with a redundant slave
robot for robotic surgery, that guides the surgeon towards target anatomy
by providing force feedback based on VFs exploiting a closed-form inverse
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kinematics to solve redundancy based on an optimization approach. Adorno
in [22], proposed a novel unified framework for teleoperated robot control
using QP programming and dynamic VFs, generated by adding linear con-
straints. An extension of this work provides dynamic constraints, obtained by
adding a fixed residual term [23]. Despite all the proposed techniques, a com-
plex design of the master interface makes force feedback particularly challeng-
ing. Moreover, most of these works encounter particular difficulties in VF ge-
ometrical definition caused by the complex surgical environments, limiting the
interactions between the robot tool tip and the environment itself. The work
based on QP problems often used non-linear constraint, without considering
closed-loop stability. Recently, many works enriched Level 3 and Level 4 of
autonomy, proposing innovative technological systems that will allow a single
surgeon to execute MIRS without the need of an expert assistant surgeon. In
particular, authors in [24] proposed a teleoperated multirobots platform, which
intends to be operated by the assistant surgeon during MIRS and to cooper-
ate with the da Vinci surgical system. In [25], the work presents a method
for online trajectory generation that can compute collision-free motions for an
autonomous assistive robotic manipulator.

Suturing procedures require a specific mention, representing a critical task
that mostly relied on the surgeon’s ability. Suturing is usually divided into
multiple sub-tasks like needle grasping, approaching the skin, making stable
contact, and task performance. Multiple papers were presented enhancing su-
turing procedure, being part of Level 3 and Level 4 of autonomy. A significant
improvement compared to direct teleoperation is introduced in [26], but the
method is only utilized for grasping and manipulating objects whereas they do
not account for the shape of the object. In [27], Chen et al. have described the
implementation of the VF on the first generation of da Vinci®robot including
a user study to compare the performance of VFs assistance and freehand tele-
operation in both needle passing and knot tying suturing sub-tasks. Liu et al.
in [28] presented an offline optimization-based solution to needle grasping and
selection of entry ports of robotic instruments. However, this method cannot
be utilized for the haptic shared-control system during a suturing task due to
the high computation time. In [29], the authors proposed a novel mechanical
needle guide and a framework for optimizing needle size, trajectory, and con-
trol parameters using sequential convex programming. Fontanelli et al. in [30]
made a comparison between multiple assistive methods for suturing in MIRS.
As exposed in this section, the trend of advanced control methods starts from
Level 0 of autonomy with the introduction of teleoperation robots. It continues



2.3. VISION ASSISTED CONTROL IN ROBOTIC SURGERY 15

with the creation of shared control techniques simplifying surgeon’s work and
introducing autonomous sub-tasks and goes towards completely autonomous
task execution in robotic surgery. The work proposed in this thesis tried to
introduce advanced control methods, relying on shared control paradigms and
laying the foundations for fully autonomous surgical procedures.

2.3 Vision Assisted Control in Robotic Surgery

Perception is an essential component of a robotic system. Vision plays a fun-
damental role to obtain geometrical and qualitative information on the environ-
ment where the robot operates, without physical interaction. A vision system
implies the use of a combination of camera hardware and software algorithm
computation that allows robots to process the data obtained from the environ-
ment.

The first use of camera and vision in robot control was to enhance trajec-
tory planning in robot grasping problems, where a simple motion controller
executes the planned path. In this approach, visual measurements are used in
open-loop making the system sensitive to uncertainties due to poor positioning
accuracy of the manipulator or the fact that the target object is moving. Succes-
sively in vision-based control, the visual measurements are used in feedback
control to compute an appropriate error vector defined between the current
end-effector pose and the pose of the target object. The crucial characteristic
of vision-based control is represented by the controlled variables, which are
not directly measured by a sensor but through complex elaborations. In partic-
ular, computer vision allows extracting useful information from camera images
using image processing, employed by the control system at different levels for
task planning and feedback control [7]. Moreover, advanced functions required
in robotics use Machine Learning techniques, focusing on pattern recognition
in acquired data.

In surgery, images are the main feedback the surgeon can use to correctly
operate in the surgical site. A vast amount of works is present in literature
for computer vision and image understanding techniques applied to robotic
surgical images [31]. Traditional teleoperated robots were equipped with 3D
visualizers, but the correct visualization of the surgical site was their only as-
signment. More recently, image-based approaches were introduced to develop
assistive techniques. Shared control methods could notably improve their ef-
fectiveness considering a vision-based approach, that guarantees the ability to
adapt the VF geometry to a changing environment. In [32, 33], a control law
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for position-based VFs is shown, where the VFs are generated in real-time
from microscope video. In MIRS and RAMS, a reliable 3D reconstruction of
the surgical scene is strictly needed to properly develop motion control of the
surgical robot. Authors in [34] created a shared control strategy that exploits
VFs to maneuver the pick-up probe for optimal prostate image acquisition. In
a surgical scenario, soft tissue deformation is an important aspect to be con-
sidered. 3D tracking of tissue deformation is proposed in [35], based on la-
paroscopic and endoscopic images. As previously exposed, Machine Learning
techniques are used more often to solve complex problems in surgical robotics.
In [36], a Reinforcement Learning framework is described and used to proto-
type and implement state-of-art Reinforcement Learning algorithms on sur-
gical robotics problems using da Vinci®robotic system. Deformation track-
ing through vision information represents a relevant method also for contact
force estimation, which is a crucial aspect of haptic guidance in robot-assisted
surgery. Authors in [37] propose a force estimation model based on CNN, us-
ing spatiotemporal information present in video sequences and the temporal
structure of tool data.

Another core topic is represented by surgical tool tracking, which is com-
monly executed using kinematic data from the robot and could be an effec-
tive method for a control system. Surgical tool tracking can be performed
using CAD model and robot kinematics [38], Bayesian state estimation [39],
or adopting Deep Learning techniques for tool detection and real-time segmen-
tation [40]. Surgical gesture classification also becomes an important instru-
ment to enhance the robot’s capability to elaborate decisions, using endoscopic
or depth images [41, 42], or exploiting recurrent neural networks trained with
kinematic information [43]. Vision-based control can significantly improve the
quality of the suturing procedure. In particular, some papers tried to propose a
solution for the needle insertion problem, identifying the entry point [44, 45]
and for the knot tying problem [46]. In [47], a vision-based method to solve for
needle grasping is introduced, allowing the robot to automatically grasp the su-
turing needle based on visual tracking of simple markers positioned on it. Re-
grasping the needle also represents a crucial time-consuming process in sutur-
ing and authors in [48] present rapid trajectory generation for bi-manual needle
re-grasping via Reinforcement Learning. In [49], an autonomous laparoscopic
robotic suturing system is shown, using point clouds to autonomously plan the
needle path. Ultimately, computer vision and Machine Learning algorithms
can also exploit different types of preoperative imaging, like Magnetic Reso-
nance Imaging (MRI), Computed Tomography (CT), and Ultrasound imaging
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Figure 2.5: The da Vinci Research Kit robot (dVRK) in ICAROS Center, Università
degli studi di Napoli, Federico II.

(US). In particular autonomous organs and tumors, segmentation can be per-
formed using different images techniques including MRI and CT and optimiza-
tion method or deep learning models [50, 51]. Furthermore, surgical robotics
could also benefit from the introduction of new visual sensing technologies:
TeraHertz, Narrow band Imaging, and Hyperspectral Imaging.

The work proposed in this thesis tried to introduce computer vision algo-
rithms, adopting traditional and Machine Learning approaches, that represent
a valid support for novel control methods in surgical robotics.

2.4 Hardware and Software

The dVRK robotic platform, placed in ICAROS Center, Università degli studi
di Napoli Federico II, has been used as hardware in the work reported in this
thesis (Fig. 2.5), alongside simulations, to develop and test the proposed con-
trol algorithms. The dVRK is an open-source mechatronic system, constituted
by the first-generation of the da Vinci®robotic system equipped with electron-
ics, firmware, and software developed by Johns Hopkins University LCSR and
Worcester Polytechnic Institute AIM Lab, on purpose to create an open control
architecture [52, 53]. The open controller provides a full ROS-based control of
all arms [54], allowing position, velocity, and current control and thus opens
the way for developing and testing advanced control techniques. A complete
kinematic and dynamic description of the dVRK robot is provided in [55, 56].
The robotic system is composed of two PSMs and an ECM commanded by
two MTMs. The MTM is an 8 DoFs manipulator where only the first 7 DoFs
are considered, the 8th joint is not actuated and it is only used to command
the opening and closing of the gripper. The slave manipulators (PSMs and

www.icaros.unina.it
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Figure 2.6: SUJ arm kinematics.

ECM) are mounted on a Setup Joint (SUJ) which is an articulated structure
composed by not actuated arms but it is possible to control breaks in each
joint and read the angular position using potentiometers. The SUJ-PSM arms
have 6 DoFs with qs = [qs1, . . . , qs6] as the generalized joint coordinates
and kinematic description shown in Fig. 2.6. The SUJ-PSM end-effector pose,
described by the homogenous trasformation T BAP between end-effector frame
AP : {Oap − xap,yap, zap} and base frame B : {Ob − xb,yb, zb}, can be
computed using the Denavit-Hartenberg (DH) convention (Table 2.1, where
a2 = 0.58 m, a3 = 0.56 m and d4 = 0.425 m) to the kinematic chain. In
the same way, the SUJ-ECM end-effector pose, described by the homogenous
trasformation T BAE between end-effector frame AE : {Oae − xae,yae, zae}
and base frame B : {Ob − xb,yb, zb}, can be computed considering only the
first four rows of Table 2.1. Two additional constant transformation TAPBP and
TAEBE are considered to compute the transformation between AP ,AE and BP
and BE as the base frame of PSM and ECM respectively. The PSM is a 7 DoFs
actuated arm moving around a fixed RCM that is a fixed point with respect to
joint, corresponding to the insertion point inside patient’s body during oper-
ations. The first 6 DoFs are defined with the following sequence RRPRRR,
where R and P identify revolute and prismatic joints respectively, while the
7th DoF corresponds to the opening and closing of the gripper. The frame
BP is chosen as coincident with the RCM point with qp = [qp1, . . . , qp6] as
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Figure 2.7: PSM arm kinematics.

the generalized joint coordinates and kinematic description shown in Fig. 2.7.
The PSM end-effector pose, described by the homogenous trasformation T BPG
between end-effector frame G : {Og − xg,yg, zg} positioned at the center of
the gripper, and RCM frame BP : {Obp − xbp,ybp, zbp}, can be computed
using the DH convention (Table 2.2, where a5 = 0.0091m) to the kinematic
chain. The ECM is a 4 DoFs actuated arm moving about a RCM with the fol-
lowing sequence RRPR. The frame BE is chosen as coincident with the RCM
point with qe = [qe1, . . . , qe6] as the generalized joint coordinates and kine-
matic description shown in Fig. 2.8. The ECM end-effector pose, described
by the homogenous trasformation T BEC between end-effector camera frame
C : {Oc − xc,yc, zc} and RCM frame BE : {Obe − xbe,ybe, zbe}, can be
computed using the DH convention (Table 2.3, where d4 = 0.007m) to the

Table 2.1: DH parameters of SUJ arm

link joint ai αi di θi

1 P 0 0 qs1 −
2 R a2 0 − qs2
3 R a3 0 − qs3
4 R 0 −π/2 − qs4
5 R 0 π/2 −d4 qs5
6 R 0 0 − qs6
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Figure 2.8: ECM arm kinematics.

kinematic chain. Moreover, joint position and velocity limits are reported in
Table 2.4. The work developed in this thesis uses a dynamic model identifica-
tion of MTM and PSM arms using recursive Newton-Euler approach, provided
by Fontanelli et al. in [55]. The method allows computing the joint torques
considering inertia, Coriolis, centrifugal, and gravity contribution, while the
contributions due to joint friction and to elastic torques acting on some of the
joints are added separately. In some works developed in this thesis, the MTM

Table 2.2: DH parameters of PSM arm

link joint ai αi di θi

1 R 0 −π/2 − qp1
2 R 0 −π/2 − qp2
3 P 0 0 qp3 −
4 R 0 π/2 − qp4
5 R a5 −π/2 − qp5
6 R 0 −π/2 − qp6
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Figure 2.9: MUSHA Hand II: has �12 mm cylindrical form (a); is mounted on the
PSM of the dVRK system (b) (c); in grasper mode (d); in fan retractor mode (e); in
palpation mode (f).

manipulator is used as an impedance controlled interface developed using the
robot dynamic parameters. Finally, the integration of advanced surgical instru-
ments on da Vinci®robotic platform [57, 58] was carried out. A side activity of
the work in this thesis regards the design and development of a new surgical in-
strument, called the MUSHA Hand II (Fig. 2.9). The tool is a multifunctional
hand with force sensors for robot-assisted LS, with three snake-like underac-
tuated fingers equipped with a three-axis force sensor, to provide force infor-
mation. The hand can be configured to either grasper mode, retractor mode, or
palpation mode for different tasks. Underactuated finger design enhances the
adaptivity in grasping and the compliance in interaction with the environment.

Table 2.3: DH parameters of ECM arm

link joint ai αi di θi

1 R 0 −π/2 − qe1
2 R 0 −π/2 − qe2
3 P 0 0 qe3 −
4 R 0 0 d4 qe4
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The hand is compatible with the latest surgical robots, as da Vinci Surgical
Systems, enhancing the functionality of the robotic surgical platform and over-
coming the limits on force sensing introduced in robot-assisted LS [59, 60].
The functionality of the hand has been demonstrated through multiple experi-
ments on dVRK as a robotic testbed.

The second robotic platform that has been used as hardware in the work
reported in this thesis, is Symani®Surgical System described in Section 2.1.
The patient side is composed of an articulated structure with a not actuated
arm controllable through control breaks in each joint, allowing positioning of
the patient side console in the surgical site. The structure is correspondent to a
SCARA robot with 4 joints and the following sequence RRRP. A rigid bar is
placed at its extremities equipped with two 7 DoFs manipulators arms with the
first 6 DoFs has the following sequence PPPRRR and the 7th DoF corresponds
to the opening and closing of the gripper. Each arm has a micro-base frame po-
sitioned on the rigid bar, chosen as coincident with the common joint centers
of the first three prismatic joints and related to a common macro-base posi-
tioned at the center of the rigid bar, through a fixed transformation. Table 2.5
(where a = 0.15, b = 0.00225 and c = 0.003) shows the DH parameters
of the arm kinematic chain, obtained considering qa = [qa1, . . . , qa6] as the
generalized joint coordinates and adding three fixed dummy joints. Moreover,
joint position limits are reported in Table 2.6.

The described robotic systems are created in a simulation environment uti-
lizing CoppeliaSim (formerly V-REP) [61], an integrated development envi-
ronment based on a distributed control architecture in which each object/model
can be individually controlled via an embedded script, a plugin, a ROS or
BlueZero node, a remote API client, or a custom solution. Simulation scripts
can be written in C/C++, Python, Java, Lua, Matlab, or Octave. The robot
model is controlled on CoppeliaSim simulation scene using ROS framework or
directly in CoppeliaSim scene using embedded scripts. Each simulation scene
streams topic to send the robot’s joints state and spatial position of simulated

Table 2.4: Joint limits for PSM arm

J1 J2 J3 J4 J5 J6

qmim[deg −m] −60 −45 0.05 −180 −90 −90
qmax[deg −m] 60 45 0.18 180 90 90
q̇mim[rad/s−m] −2 −2 −0.4 −6 −5 −5
q̇max[rad/s−m/s] 2 2 0.4 6 5 5
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Figure 2.10: CoppeliaSim simulator scene with dVRK robot model.

objects. In particular, the dVRK simulator is presented in [56], [62] and [63],
presenting the kinematic model, the control architecture and example simu-
lation scenes. The complete dVRK simulator is open-source and available at
https://github.com/unina-icaros/dvrk-vrep.git (Fig. 2.10). A
complete simulator of the patient-side manipulators of Symani®is created, us-
ing the Universal Robot Data Format (URDF) to represent the kinematic struc-
ture and visual appearance of the robot, as shown in Fig. 2.11.

Table 2.5: DH parameters of Symani®patient-side arm

link joint ai αi di θi

1′ Fixed 0 π/2 − π/2
1 P 0 π/2 qa1 π/2
2 P 0 π/2 qa2 π/2
3 P 0 π/3 qa3 −
3′ Fixed 0 π/2 − −π/6
4 R 0 −π/2 a qa4
5 R 0 π/2 − qa5
5′ Fixed 0 π/2 b π/2
6 R c 0 − qa6 + π/2

Table 2.6: Joint limits for of Symani®patient-side arm

J1 J2 J3 J4 J5 J6

qmim[deg −m] −0.1 −0.1 −0.1 −180 −90 −90
qmax[deg −m] 0.1 0.1 0.1 180 90 90

https://github.com/unina-icaros/dvrk-vrep.git
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Figure 2.11: CoppeliaSim simulator scene with patient-side robot model of
Symani®Surgical System.



Chapter 3

Vision-based Virtual Fixtures
Generation for Polyp Dissection
Procedures

This chapter presents a novel solution for polyp dissection surgical procedure
that requires very accurate detection of the region of interest and high-precision
cutting with adequate safety margins. In this case, the dissection procedure
represents the specific surgical problem to enhance through the use of shared
control approach, whose geometry is defined using basic computer vision tech-
niques. In particular, this chapter proposes a method to constrain the robot to
follow an accurate dissection path based on VFs. The VFs are created via
specific control points obtained directly from images of the surgical scene and
are updated by the vision algorithm. The VFs constraints can autonomously
adapt themselves to environmental changes during the surgical intervention.
The entire pipeline is validated through experiments on the dVRK robot.

3.1 Introduction

Nowadays, CRC is one of the major health problems. The majority of CRCs
arises from adenomas or ”polyp” growths on the inner surface of the colon.
Endoscopic detection and removal of colorectal polyps significantly reduce
the incidence and mortality of CRC, justifying the development of efficient
polyp dissection procedures, which require precise movements, high dexterity,
and enhanced surgeon’s skills for region identification and accurate path defi-
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nition [5]. In particular, sessile polyps are flat serrated growths adhered to the
colon surface, difficult to be detected and removed.

As exposed in Section 2.1, the benefits and safety of MIRS in gastric
surgery have been evaluated, showing the enhancement of the quality in surgi-
cal procedures [64]. In the case of robotic polypectomy, the surgical operation
is performed following precise steps:

• colonoscopy for polyp detection;

• safety margins definition around the polyp;

• path planning for cutting execution.

Traditionally, the polyp detection is performed by the surgeon based only on
his/her experience in the identification of specific surgical features (colors and
textures), allowing the definition of the region of intervention. Moreover, the
safety margins’ definition is executed by the surgeon that marks selected points
in telemanipulation modality by producing cautery spots around the polyp. At
the conclusion, the surgeon performs a first cutting operation considering the
defined margins, then he/she lifts the surface of the polyp to execute another
cutting operation on the underlying tissue while keeping the focus on prede-
fined margins. Furthermore, change in polyp’s shape and rigid displacements,
due to the patient’s movements during the task, may compromise the correct
execution of the procedure, modifying the predetermined safety margins. In
this scenario, images are the main feedback the surgeon can use to correctly
operate in the surgical site. Therefore, given the increasing autonomy in sur-
gical robotics, vision-based techniques play an important role and can arise by
extending computer vision algorithms to surgical scenarios [31]. Moreover, a
large number of surgical tasks could benefit from the application of advanced
shared-control techniques [14]. In particular, VFs are commonly recognized
as a powerful method to improve surgeon’s performances, increasing accuracy
and precision [15] as exposed in Section 2.2.

3.1.1 Related Works

Related works can be divided into two main topics: vision algorithms for polyp
detection and VFs techniques applied to surgical robotics.

• Vision algorithms Automatic polyp detection is a hot research topic. Bernal
et al. [65] compared the performances of different polyp detection methods.
Some detection methods exploit classic image processing techniques to ob-
tain polyp boundaries. Hwang [66] used speeded up robust features (SURF)
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and quantized them with K-means clustering to represent the images as a his-
togram of visual words. The features are then, classified with an SVM classi-
fier. Zhu et al. [67] developed a computer-aided detection of colonic polyps
based on polyp curvature estimation. Other authors exploit texture and color
information as region descriptors in the image. Karkanis et al. [68] proposed
an approach based on wavelet decomposition, while Hwang and Celebi [69]
used watershed segmentation with initial markers selected using Gabor tex-
ture features and K-means clustering. Recent developments in deep learning,
e.g., the use of CNNs have made significant advances in this field. Most of
all, the differences among the methods are based on the selection of the spe-
cific network architecture or the data-set for training. Particularly, Riberio et
al. [70] used CNNs for automated classification of colonic mucosa for colon
polyp staging.

Remarkably, the majority of these methods are not currently used in clinic
procedures. There are several reasons behind this, for example, some of
them are not suitable for real-time constraints; some are built on a theoreti-
cal model of the polyp; CNNs performance is strongly related to the quality
and amount of realistic images used to train the network; in conclusion, the
clinical environment, with the presence of smoke, blood and specular high-
lights, makes the detection process a complicated task. For these reasons,
more feasible and reliable methods for polyp detection need to be devel-
oped and implemented to ensure the correct execution of the polyp resection
pipeline.

• Virtual Fixtures One of the major obstacles in vision-based VFs generation
in surgical procedures is the ability to adapt the VFs geometry to a changing
environment. More recently, VFs generation is supported by the introduction
of vision-based techniques. Bettini et al. [71] proposed a VFs application in
vitreoretinal eye surgery, using computer vision for providing a reference
trajectory to the VFs control algorithm. Rydén et al. [72] showed a method
for creating FRVFs protecting an object from unwanted contact using point
cloud streamed by an RGB-D camera. Yamamoto et al.[73] developed an in-
terface for teleoperated MIRS providing vision-based FRVFs and augmented
visual feedback. Very few papers make a significant consideration of adap-
tive VFs, where the constraint geometry autonomously moves as a result of
environmental changes.
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3.1.2 Contribution

The work presented in this chapter proposes a vision-based method for robot-
aided polyp dissection using the dVRK robot [74, 17]. In this case, the authors
chose to reproduce a simple surgical scenario to create a concrete base for
the development of dynamic GVFs. For these reasons, the approach exploits
basic computer vision concepts, a simplified setup with a colored object, and
impedance control to enforce GVFs constraints. The VFs path is adapted to the
change in polyp’s shape and environment displacement, that may occur during
the dissection procedure, by updating new control points from the vision al-
gorithm. The goal of the work is to define a functioning pipeline to assist the
surgeon in the dissection task, by enhancing the quality of intervention. The
method presented in this chapter could represent a preliminary system for the
application of autonomous adapting GVFs, using a simple perception phase
that can support an advanced control strategy. An experimental setup recreates
patient’s anatomy using phantoms and the proposed approach includes vision
algorithms for detection and segmentation of the polyp and path planning of
the cutting task. Then, a VF, i.e. a constraint that restricts the motion of the
robot’s tip along the path through a haptic guidance force rendered to the sur-
geon, is generated. The proposed pipeline is articulated as follows:

1. pre-operative calibration;

2. stereo endoscopic images acquisition, with the dVRK endoscope in fixed
position;

3. detection and segmentation of the polyp, allowing the computation of
control points, defining the polyp contours adjusted with a safety mar-
gin;

4. point 3D reconstruction and path planning;

5. VF generation on the pre-planned path, by rendering a force to the user
when the the robot exceeds the path.

3.2 System Description

Figure 3.1 shows the overview of the system, composed by the dVRK robot
and an experimental setup intended to replicate a surgical scene, adopting a
plastic phantom to reproduce patient’s tissue and a blue object representing
the polyp.
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Figure 3.1: Overview of the system. The approach starts from stereo endoscopic
images processing, including detection and segmentation of the region of interest, and
leads to the definition of accurate points needed in path planning and VF generation,
executed through haptic guidance forces rendered to the user.

3.2.1 dVRK Robot

The dVRK robot is used in teleoperation mode, with the two PSMs com-
manded by two MTMs, using the open controller developed by [52] and de-
scribed in Section 2.4. One of the MTMs is controlled through an impedance
controller, which requires the measurement of external forces to the user. Con-
sidering an n DoFs manipulator and a task space vector x ∈ Rr with r ≤ n,
the impedance dynamics is achieved through control:

M ¨̃x+D ˙̃x = fh + fV F (·), (3.1)

where x̃ = xd−x, withxd as the desired value of the robot task space variable,
M ∈ Rr×r and D ∈ Rr×r are the inertia and damping matrices, designed to
be fixed, diagonal and positive definite, fh ∈ Rr is the external forces applied
by the user and fV F (·) is the additional force due to the VF. This dynamics is
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obtained by setting the torque control input τ ∈ Rn of the master robot as

τ = B(q)v +N(q, q̇) + JT (q)fh, (3.2)

v = J−1A (q)M−1(M ẍd +D ˙̃x−M J̇A(q, q̇)q̇ − fh,A), (3.3)

where B(q) ∈ Rr×n is the joint space inertia matrix, J(q), JA(q) ∈ Rr×n
are the geometric and the analytic Jacobians respectively, and

N(q, q̇) = C(q, q̇)q̇ + g(q) + h(q, q̇) (3.4)

are terms for Coriolis and centrifugal contributions C(q, q̇)q̇, gravity g(q),
friction and disturbance torques h(q, q̇) [7, 17]. The force estimation is per-
formed by resorting to a nonlinear observer [17, 75, 76]. The system includes
an ECM, consisting of a stereo camera with a 5 mm baseline. The dVRK
dynamic model was computed and identified in [55].

3.2.2 Calibration and Reference Frame Definition

The proposed method requires pre-operative calibration. Figure 3.2 shows the
reference frames used in the Chapter. The generated VF is expressed in this
inertial reference frame Fp : (Op − xpybzp), with the origin positioned in
the PSM’s RCM. The origin of the reference frame Ft : (Ot − xtytzt) is
positioned in the PSM tool tip. The current position of the tool tip in Carte-
sian space, computed through the direct kinematics of the dVRK, provides the
coordinates of point Ot in the frame Fp. A Zhang’s stereo camera calibra-
tion is performed [77] to estimate the transformation between the two endo-
scopic cameras and to define the camera reference frame Fc : (Oc − xcyczc).
Then, by positioning the tool tip in ten different points, the transformation
T bc between Fp and Fc is computed adopting an absolute orientation formula-
tion [78]. It is important to underline that this kind of calibration remains an
open problem in robotics, and this solution ensures an error lower than 1 cm.

3.2.3 Vision Algorithm: Segmentation and 3D Reconstruction

The system takes stereo endoscopic images as input and a pre-processing step
is performed. A watershed transformation is applied on the left gray-scale im-
age. It operates on the image as a topographic map, with the brightness of
each point representing its height, and finds the lines that run along the tops of
ridges. This method allows defining the object region in the image, which is
later used as a seed point defining a bounding box around it. Relying on the
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Figure 3.2: Reference frames definition. Fc : (Oc−xcyczc) = endoscope reference
frame; Fp : (Op − xpybzp) = inertial reference frame; Ft : (Ot − xtytzt) = tool
reference frame.

defined region, the widespread GrabCut segmentation method [79] is applied.
This technique is based on graph cuts, addressing the visual segmentation task
as an energy minimization problem, based on foreground (polyp) and back-
ground models. Giving the input image I , α = (α)Pi=1 is the set of unknown
binary label of the pixels (αi = 0 for the background pixels, αi = 1 for fore-
ground), with P as the number of pixel. The algorithm estimates the values α
minimizing the energy function:

E(α) = Edata(α) + γEsmooth(α) (3.5)

where Edata(α) =
∑

i Ui(αi) and Ui(αi) defines the probability for a pixel
to belong to the foreground or background [80]. As in [80], a modification of
this algorithm is adopted, solving the minimization problem by a graph cuts
minimization algorithm and defining the statistical models for the data energy
function as a Gaussian Mixture Model based on color distribution.

The background and foreground layers are defined by a bounding box
around the seed point created by the watershed transformation around the ob-
ject, allowing isolating the object inside the image (Fig. 3.3). At this point,
the homographic transformation H between the original left and right images
is computed, using Scale-Invariant Feature Transform (SIFT) for features de-
tection [81] and Fast Library for Approximate Nearest Neighbors (FLANN)
for matching [82]. The left segmented image allows detecting contour points
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(a)

(b)

(c)

Figure 3.3: Segmentation method: (a) Original frame; (b) Binary mask; (c) Seg-
mented Image.

of the object on the left image plane, computing the Hull convex approxima-
tion. The corresponding contour points on the right image plane are identified
applying the previously computed H transformation. In conclusion, the 3D
position of the contour’s points is reconstructed using a triangulation method
with direct linear transform, expressed in the camera frame Fc.

3.2.4 Path Planning and VF Generation

The contour points are mapped in the inertial reference frame Fp through the
transformation T bc . In particular, the points’ coordinates are adjusted with a
safety margin that allows performing the cutting in safe conditions. Once these
3D points are determined, they are used to build the VF geometry. As in [17],
the path for cutting is formulated through a parametric curve. In this case, a
closed B-Spline curve is adopted, defined in its 1-dimensional form by:

Γ(s) =
n∑
i=0

Ni,k (s)pi, (3.6)

where Γ(s) denotes the curve, k its order, s ∈ [0, 1] is the normalized curve
parameter and Ni,k are its basis function. The 3D points identified by our
vision algorithm are used as controls points of the curve (pi). Then, the VF is
defined as the surface created by sweeping the polyp contours, determined by
the B-Spline curve, along the axis that is perpendicular to the tissue’s plane,
which is set as coincident to the axis perpendicular to the camera. A simple
constraint enforcement method is selected, consisting in the application of a
spring-damper like force imposed on the path:

fV F = Kp(xd − x)−Kdẋ, (3.7)
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whereKp andKd are properly designed diagonal and positive definite matrices
and xd is the set point belonging to the constraint geometry having minimum
distance from the current position x.

For the defined B-Spline, the Newton-Raphson (NR) method is used to
find the nearest point on the curve xd starting from the current robot position.
This represents a general method for iteratively finding the extrema of a given
function. As explained in [17], the desired point on the curve is the mini-
mum distance point xd = Γ(s̄), obtained by finding the correspondent spline
parameter s̄. The customary NR update law is:

sk+1 = sk +
δ(x, sk)

δ′(x, sk)
, (3.8)

where δ(x, s) : Rr×R→ R is the distance function the point x and the spline
Γ(s), defined by:

δ(x, s) =
√

(x− Γ(s))T (x− Γ(s)) (3.9)

δ′(x, sk) is the derivative at sk of δ(x, s) with respect to the curve parameter
s. Finally, the VF is mapped to the MTM robot, considering the z-axis value
defined by the tissue’s normal and displaying the attractive force f through
impedance control of the MTM, realized thanks to the dVRK dynamic model
with the parameters identified in [55].

3.3 Experimental Validation

The proposed vision-based assistive control is evaluated by executing multiple
dissection tasks. In all the sessions, a blue object with 1 cm diameter is con-
sidered to reproduce the polyp attached to a silicon rubber phantom commonly
used by the surgeons for training. The safety margin is set at 1 cm from the
polyp’s edge, as usual in surgical dissection operations.

Three different non-expert users perform the dissection procedure by com-
manding the PSM of the dVRK through the MTM manipulator and following
the cutting path defined by the vision algorithm. The dissection task is re-
peated twice, in the first session the VF is activated while in the second session
it is deactivated. In the first session, whenever the user exceeds the defined
path, the attractive force pulls him/her towards the planned path. During the
second session, without the VF generation, the cutting path is simply defined
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(a) (b) (c)

Figure 3.4: (a) VF path (red line); (b) The polyp’s shape and position during the task
changes due to dVRK tool interaction; (c) VF path (red line) adapted after the change
in polyp position.

by a circle, with 1.5 cm diameter, centered on the polyp. The user can per-
form the dissection task, trying to follow the imposed circle, projected on the
endoscopic image, without any haptic constraint.

To evaluate the accuracy and precision in the dissection task, the mean
absolute error is computed between the current position of the PSM and the
desired position defined as the minimum distance point on the B-Spline, as
defined in Section 3.2.4. To evaluate the performance of the 3D reconstruc-
tion, the current position of the PSM tool’s tip is recorded through the direct
kinematics of the dVRK and the vision algorithm proposed, positioning the tip
in 50 different workspace positions. Then, a comparison is made between the
means of the z-axis values through a statistical unpaired t-test with a signifi-
cance level α = 0.05.

The B-Splines projected on the left camera image are shown in Fig. 3.4a.
It is possible to notice that the vision algorithm adapts the B-Spline, at a fre-
quency of 25 Hz, after a change in polyp position and shape, that occurred af-
ter the interaction with the dVRK tool during the task (Fig. 3.4b). This allows
keeping the VF constraint on the specific path during the entire dissection pro-
cedure, autonomously moving as a result of environmental changes (Fig. 3.4c).

3.3.1 Results

Figure 3.5 shows the PSM position and B-Spline during a dissection task in
the xy plane of the PSM reference frame; Figure 3.6 shows the PSM position
and the circle during a dissection task in free motion. The dissection tasks
with VF generation presents a mean absolute error equal to 2.1 mm along
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Figure 3.5: VF path (red line) and PSM position during the dissection task.

x-axis and 1.7 mm along y-axis. Conversely, the dissection tasks without VF
generation has a mean absolute error equal to 13 mm along x-axis and 31.6 mm
along y-axis. The results of the t-test for the 3D reconstruction evaluation
proved to be statistically significant with a probability level of p = 0.9831
(α = 0.05). Figure 3.8a shows the PSM position and the desired position
(minimum distance point on the B-Spline) along x-axis. The related estimated
force norm along x-axis is represented in Figure 3.8b. Moreover, Figure 3.8c
reports the corresponding PSM position and desired position along y-axis, and,
finally, Figure 3.8d shows the estimated force norm along y-axis. Figure 3.7
contains the estimated haptic guidance forces rendered to the user through the
master side (MTM) during the tasks. Figure 3.8 and 3.7 are referred to the
same dissection task.

3.3.2 Discussion

As it is possible to notice in Fig. 3.5, the user follows the determined path
during the procedure, while in Fig. 3.6 a more irregular path is performed by
the user in free motion without the VF assistance. The mean absolute error
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Figure 3.6: PSM position and the visual guidance circular line (red line).

values present a significant reduction (∼ 10 mm along x-axis and ∼ 30 mm
along y-axis) in the VF-based dissection task. This suggests that the intro-
duction of the VF improves the accuracy of the procedure, helping the user
performing a more precise cutting path. It may be noted that in Fig. 3.7 the
maximum reached force is about 4 N, allowing the surgeon to perform the
task accurately, without experiencing excessive force. The results of the 3D
reconstruction t-test show the absence of statistically significant differences
between z-axis values computed through the vision algorithm and the robot’s
kinematics. In Fig. 3.8, the peaks in force norms occur when the PSM posi-
tion distances the desired position. Thus, the user continuously experiences
guidance forces when the robot position is not on the VF path.

3.4 Conclusion and Future Works

The work presented in this chapter introduces an experimentally validated
vision-based method for VF generation in MIRS polyp dissection tasks. The
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Figure 3.7: Estimated Haptic guidance forces displayed to the user through the MTM.

vision algorithm allows creating a constraint path for cutting, through VF gen-
eration. The VF path is updated by the vision algorithm, allowing considering
environment displacement during the dissection task. The proposed strategies
are evaluated through dissection experiments on dVRK performed by non-
expert users, showing good results in improving the accuracy and precision
of intervention and thus suggesting the feasibility of the proposed pipeline.
The goal of future works is to consider more advanced computer vision tech-
niques, allowing the proposed method to be extended to realistic surgical sce-
narios with regards to polyp detection, to integrate tissue’s deformation, and to
enforce the method also in presence of occlusions. Also, an accurate study on
medical procedures will be considered for a correct definition of safety margins
for cutting. In conclusion, a validation involving surgeons could be conducted
to prove the effectiveness of the pipeline.
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Figure 3.8: Dissection experiment. Duration: 100 seconds. Time histories of: (a)
PSM position and the desired position (minimum distance point on the B-Spline)
along the x-axis; (b) The related estimated force norm along x-axis; (c) PSM po-
sition and the desired position (minimum distance point on the B-Spline) along the
y-axis; (d) The related estimated force norm along y-axis.



Chapter 4

Vision-based Virtual Fixtures
for Suturing Needle Grasping
Optimization

This chapter addresses a frequent problem in surgery, suturing. Here, a vision-
based method for suturing needle tracking is proposed, defining the needle
grasping pose and avoiding encountering kinematic constraints on the dVRK.
The central purpose is to define a suitable tracking method for needle pose esti-
mation, allowing defining a system to guide the surgeon towards needle grasp-
ing configurations that minimize the possibility of encountering joint limits
and singularities along with a suturing task.

4.1 Introduction

In MIRS procedures, suturing represents a very difficult procedure, requiring
the surgeon to continuously change the orientation of the needle to find the
appropriate pose required to correctly perform the suturing task [83]. Diffi-
cult conditions are also imposed by the robot itself, for example, joint limits
and singularities could increase the surgeon’s cognitive workload and causes
degeneration in performances. As previously exposed, haptic shared control
techniques represent a powerful method to improve surgeon performances in
suturing tasks. In particular, a grasping optimization approach using VFs con-
straints could bring a significant enhancement to the quality of intervention.
A crucial step for the application of such methods is represented by the ac-
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Figure 4.1: Experimental setup with reference frames and grasp parametrization of
the needle.

curate detection and tracking of the needle. Vision-based techniques exploit
color-based segmentation using markers on the needle, generally not suitable
for realistic applications. In [84], the 3D pose of the needle is computed using
geometric information, but relying on multiple observations of the needle.

The work presented in this chapter proposes a vision-based tracking of su-
turing needle, exploiting basic tracking-by-detection techniques, defining the
chosen grasping pose for immediate starting of the suturing procedure. The
method is tested using dVRK robot in a haptic shared control application, guid-
ing the surgeon during reach-to-grasp the needle in suturing task, optimizing
the cost of robot joint limits and task-oriented manipulability.

4.2 Methods

The experimental setup is similar to the one exposed in Section 3.2.2 (Fig. 4.1),
composed by the PSM arm of the dVRK robot whose inertial reference frame
is represented by Fr : (Or − xryrzr). Zhang stereo camera calibration is
performed to estimate the transformation between the two endoscopic cameras
and to define the camera reference frame Fc : (Oc − xcyczc). While, Fn :
(On − xnynzn) is the needle center frame, Ft : (Ot − xtytzt) is the frame
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(a) (b) (c) (d) (e) (f)

Figure 4.2: System pipeline: (a) Original frame; (b) Segmented Image; (c) Binary
mask; (d) Ellipse fitting; (e) Minimum fitting rectangle; (f) Reference frame genera-
tion.

attached to the needle tip and Fg : (Og−xgygzg) represents a frame attached
to the robot end-effector corresponding with a generic desired grasping pose.
The tracking algorithm allows defining the transformation T cn, mapping Fn in
Fc.

The system takes stereo endoscopic images, as input and the use of robot
kinematics allows restricting the image to a region of interest in which the
needle is present, thus speeding up computations, and increasing robustness
for visual occlusions. A pre-processing step is performed, exploiting edges
and color and then, the widespread GrabCut segmentation method is used,
defining a binary mask of the needle. This allows computing the minimum
rectangle area that contains the needle and its ellipse-shaped projection, using
the least-square fitting method. This leads to the definition of the central point
of the needle On as the center of the fitted ellipse. In conclusion, the needle
pose is estimated, given the 3D coordinates of five specific points on it and
their correspondent image projection coordinates on the minimum rectangle,
solving the Perspective-n-Points (PnP) problem with direct linear transform
and RANdom SAmple Consensus (RANSAC) methods. Figure 4.2f shows the
entire system pipeline.

Once the reference frame is defined, a parametrization of the needle grasp-
ing z = [n,α] is adopted, identifying the curvilinear abscissa n and the angle
α around tangent, as shown in Fig. 4.1. The system computes the linear and
angular velocities of the PSM arm in Fr and the joint coordinate vector q,
combining the differential forward kinematics of the PSM. These parameters
are used to optimize the grasping pose, defining a cost function according to
the joint limits. With s as a parameter of the trajectory of the needle tip in Ft,
the function is expressed as:

H(z) =

∫ s∗

0
h(q̂g(s, z))ds. (4.1)
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(a) (b) (c)

Figure 4.3: Grasping a needle using PSM: (a) Initial pose; (b) Approaching; (c)
Grasping.

The optimal grasping pose is obtained by finding the parameter vector z that
minimizes the cost function H(z), solving through the gradient descent itera-
tive method. The Cartesian pose for the PSM is calculated from the optimal
grasping parameter z∗ given the needle kinematics and its global pose. Fi-
nally, the corresponding desired MTM pose is determined from the optimal
desired pose of the PSM, and a haptic cue is displayed on the MTM through
impedance control, guiding the user toward optimal grasping configuration.

4.3 Results

The experiments consist in suturing tasks using the dVRK robot. To evaluate
the accuracy of the tracking method, the 3D coordinates of the first corner of a
chessboard, positioned on the origin of Fn from the vision algorithm, are cal-
culated. A mean absolute error of 1.4 mm is obtained between the corner and
origin coordinates. During the experiments the dVRK is set in teleoperation
mode and a single PSM arm is commanded by one MTM, with impedance con-
trol implemented thanks to the dVRK dynamic model identified in [55]. The
obtained grasping pose is used to generate force cues and inform the user dur-
ing the reach-to-grasp phase. The surgeon feels haptic cues (Fig. 4.4), during
the experiment shown in Fig. 4.3. The force cues decrease by the closeness to
the optimal grasping pose and correspondingly, post-grasp movements during
the suturing task execution are free from joint limits and singularities.
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Figure 4.4: Haptic guidance force felt by the user during experiment.

4.4 Conclusion

The work presented in this chapter proposes a vision-based tracking of suturing
needle. The method finds application in haptic shared control technique using
dVRK, minimizing the possibility of encountering joint limits and singularities
during the suturing task. The optimal grasp pose is used to compute force cues
that guide the user’s hand via a MTM. The mean absolute error suggests the
feasibility of the tracking method, while the effectiveness of the shared control
for needle grasping is illustrated using experiments performed on dVRK robot.

The goal for future works is to consider kinematic information from the
robot and fusing it with visual information using Kalman or Particle filter as
in [85], exploiting the proposed vision-based tracking. Moreover, quantifying
performance improvements via a proper human subject test is another future
extension of this work.



Chapter 5

Vision-based Dynamic Virtual
Fixtures for Tools Collision
Avoidance

This chapter addresses the problem of surgical tool clashing during procedures.
In robot-aided surgery, during the execution of typical bimanual procedures
such as dissection, surgical tools can collide and create serious damage to the
robot or tissues. The procedures performed by da Vinci-like surgical robots
are teleoperated, potential collisions between surgical tools are a very sensitive
issue declared by surgeons. Shared control techniques based on VF can be an
effective way to help the surgeon prevent tools collision.

The work in this chapter presents a surgical tools collision avoidance
method that uses FRVFs. Tool clashing is avoided by rendering a repulsive
force to the surgeon. To ensure the correct definition of the VF, a marker-less
tool tracking method, using deep neural network architecture for tool segmen-
tation, is adopted. The use of direct kinematics for tools collision avoidance
is affected by tools position error introduced by robot component elasticity
during tools interact with the environment. On the other hand, kinematics in-
formation can help in case of occlusions of the camera. Therefore, this work
proposes an EKF for pose estimation that ensures a more robust application
of VF on the tool, coupling vision and kinematics information. The entire
pipeline is tested in different tasks using the dVRK system.
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5.1 Introduction

During the execution of a surgical procedure, two or more tools can come
dangerously close to each other. The surgeon has a very limited vision on
the surgical site which reduces dexterity and increases the cognitive work-
load, making the task most difficult to be performed. The view the surgeon
has could be insufficient to avoid the collision, thus this issue can cause tools
or tissues damage. Experienced surgeons develop strong capabilities to com-
pensate for the lack of haptic information, recreating the perception of haptic
feedback from visual cues of the surgical scene [86]. Recent studies demon-
strate different performances in MIRS procedures between experienced and
novice surgeons, suggesting that haptic feedback affects performances differ-
ently based on the operator’s level of experience with the robot [87]. Haptic
feedback could significantly affect the performances of novice surgeons, re-
ducing training duration and improving the effectiveness of the procedures.

A large number of surgical tasks can benefit from the introduction of colli-
sion avoidance techniques. During robotic polypectomy, as explained in Chap-
ter 3, one surgical tool has to cut around the polyp while another tool keeps
raised the surface of the polyp [88]. In this procedure, the surgeon performs
a first cutting operation, then lifts the surface of the polyp and executes an-
other cutting task. Automatic robotic assistance to avoid collision between
the surgical tools can alleviate the surgeon’s workload during the execution
of this task and can allow the surgeon to focus on following the polyp mar-
gins. In procedures requiring tissues removal with the use of electrocautery,
the direct coupling that occurs with a conductor, such as another tool, could
burn non-targeted tissue [19]. The collision between surgical tools in MIRS
can be avoided with the application of advanced shared control techniques. In
particular, VFs can impose collision avoidance by rendering haptic cues to the
surgeon. FRVFs restrict the motion of the robot’s tool tip through a repulsive
force rendered to the surgeon. The dVRK allows testing new control methods
and it is already used to test VF-based methods [88] [17]. Since dVRK robot
joints are driven through cables that introduce elasticity, backlash, and non-
linear friction [55], tools position information obtained through direct kine-
matics is affected by errors and thus requires correction. Therefore, to ensure
a correct application of the VF, a method for surgical tool tracking is strictly
needed.
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5.1.1 Related Works

As exposed in Chapter 2, since its introduction, shared control techniques have
had great success in surgical applications and for collision and obstacle avoid-
ance. Li et al. presented an online collision avoidance method for real-time
interactive control of a surgical robot in geometrically complex environments,
such as the sinus cavities [18]. Ren et al. [89] proposed dynamic active con-
straints using medical images. The system builds potential fields to reduce
the contact force between the tool tips. Xia et al. [90] reduced the proportional
gain in an admittance control law according to the distance between the tool tip
and the nearest obstacle. This allowed the system to smoothly avoid collisions.
The method proposed in [72] uses depth information for FRVFs creation and it
is generally applicable only for collision avoidance on the tool tips. Banach et
al. proposed a Forbidden Region Active Constraints strategy to avoid surgical
tool clashing and, at the same time, the collision with patient anatomy using
elastoplastic frictional force control model [19]. In this work, the current poses
of the tools are tracked in real-time from the robot’s kinematics of the dVRK.
Thus, a non-compensated position error could compromise the effectiveness
of the method.

In the literature, most of the tracking methods used to correct the surgical
tool position error are realized using the sensors of the robotic system or using
external sensors integration, but still obtaining limited accuracy. A significant
improvement is introduced by image-based approaches, detecting the tool’s
position and orientation in the camera reference frame. In [91], the authors pre-
sented a survey about vision-based and marker-less surgical tool tracking. The
works can be classified based on the segmentation and tracking methods [92],
most of them exploiting Random Forest (RF) or CNN techniques. In [93], the
authors combine a region-based segmentation technique with point-based pose
estimation, using prior knowledge of the instrument shape through classifica-
tion with a Random Forest (RF), besides temporal motion is incorporated with
a Kalman filter. Du et al. [94] proposed a 2D tracker based on a Generalized
Hough Transform using SIFT features which can both handle complex envi-
ronmental changes and recover from tracking failure. They extended the work
in [95], presenting a 2D pose estimation framework for articulated endoscopic
surgical instruments, which involves a fully convolutional detection-regression
network (FCN) and a multi-instrument parsing component.
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5.1.2 Contribution

This chapter proposes a surgical tool collision-avoidance method in MIRS.
The goal is to improve safety in surgical procedures, enhancing especially
novice surgeons’ abilities. The method is tested on the dVRK robotic system.
FRVFs are used to avoid surgical tool clashing, by rendering a repulsive force
to the surgeon which is inversely proportional to the distance between tools.
The method includes a marker-less surgical tool tracking technique using an
EKF that couples vision and kinematics information to enhance the robustness
of VFs application. Visual information allows overcoming the large position
error, that occurs on the dVRK kinematics, especially when the surgical tools
interact with the environment. While kinematics data reinforce the method in
the presence of visual occlusions. To validate the method, an extensive study
involving human subjects is conducted on two groups of surgeons, namely ex-
perts and novice surgeons, each group is constituted by 6 subjects. The goal is
to demonstrate significant improvement in performances caused by the intro-
duction of force cues. The pipeline of the method is articulated as follows:

1. pre-operative calibration and stereo endoscopic images acquisition;

2. tool segmentation and tool tip pose estimation from vision algorithm;

3. kinematic and vision data fusion with EKF;

4. VFs generation and force rendering.

5.2 System Description

5.2.1 dVRK Robot

This work considers both PSMs commanded by two MTMs of the MTMs and
the endoscopic images obtained by the ECM. To generate force cues, as in
Chapter 3 and Chapter 4 the MTMs are controlled through an impedance con-
troller. Figure 5.1 shows the reference frames definition. The base frame,
Fb1 : (Ob1 − xb1yb1zb1), is positioned at the PSM1 RCM. Likewise,
Fb2 : (Ob2 − xb2yb2zb2) is the base frame centred in the PSM2 RCM. All the
measurements in this work will be expressed referring to the base frame Fb2 of
the PSM2. The frames Fg1 : (Og1 −xg1yg1zg1) and Fg2 : (Og2 −xg2yg2zg2)
are the grippers frames. The direct kinematics of the dVRK allows computing
the current position of the tools in the Cartesian space, providing the coor-
dinates of Og1 and Og2 in Fb1 and Fb2 respectively. The reference frames
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Figure 5.1: Experimental setup and frames definition. Gripper frame: Fg2 : (Og2 −
xg2yg2zg2) and Tool tip frame Ft2 : (Ot2 − xt2yt2zt2).

Ft1 : (Ot1 − xt1yt1zt1) and Ft2 : (Ot2 − xt2yt2zt2) have their origins in the
PSM1 and PSM2 tool tips, respectively. For each PSM, the frames Fg and Ft
have the same orientation and the origin of Ft is translated of 1 cm along the
z-axis of Fg. As in Chapter 3, Zhang stereo camera calibration is performed to
define the camera reference frame Fc : (Oc−xcyczc) and a hand-eye calibra-
tion is performed to find the transformation T b2c between Fb2 and Fc. During
the calibration process, the tool is placed in ten fixed positions and the trans-
formation is computed adopting an absolute orientation formulation [78]. A
hand-eye calibration is performed to find the transformation T b2b1 between the
fixed frames of each robotic arm.

5.2.2 Tool Segmentation and 3D Reconstruction

The method directly uses laparoscopic images to track the surgical instrument.
A deep learning solution for instrument semantic segmentation is employed.
It is based on U-Net architecture, which is a fully CNN, composed of a con-
tracting path to capture context and by an expanding path that enables pre-
cise localization [96]. The system adopts the U-Net modification proposed
in [97], called TernausNet that uses pre-trained VGG16 networks as an en-
coder. The network is trained using the dataset provided for MICCAI 2017
Endoscopic Vision Sub-Challenge: Robotic Instrument Segmentation 2 con-

2http://endovissub2017-roboticinstrumentsegmentation.grand-challenge.org/

http://endovissub2017-roboticinstrumentsegmentation.grand-challenge.org/
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(a) (b) (c) (d)

Figure 5.2: Segmentation method: (a) Original frame; (b) Binary mask; (c) Point
identification in the image plane; (d) Reference frame definition.

sisting of 8×225-frame sequences of high-resolution stereo camera images
acquired from a da Vinci®Xi surgical system during several different porcine
procedures, with a 2 Hz frame rate. The output of the model is an image
in which each pixel is the probability value of belonging to the instrument or
background area. Then the binary segmentation is obtained, in which all the in-
strument pixel values are set as 255 and all the background pixel values are set
as 0. The homographic transformation H between the original left and right
images are computed, using Scale-Invariant Feature Transform (SIFT) for fea-
tures detection and Fast Library for Approximate Nearest Neighbors (FLANN)
for matching, as in [88]. To detect the tool tip on the image plane, the search
area range is reduced by re-projecting the tip kinematic position on the image
plane and by constructing a rectangle centered on the projected point. Then,
the 3D position of the PSM2 tip, expressed in the camera frame Fc, is re-
constructed by using a triangulation method with direct linear transform. The
tool orientation is computed solving the PnP problem, which allows com-
puting the orientation of the object from a set of n correspondences between
3D points and their 2D projections [98]. In this case, the line of symmetry of
the tool is computed, allowing the identification of four specific points on the
line in the image plane and their correspondent 3D coordinates thanks to the
knowledge of the tool’s geometry. Finally, using transformation T b2c , the tool
tip position and orientation of PSM2 is found, expressed in the base frameFb2 .
Figure 5.2 shows the results of the segmentation method.

5.2.3 Surgical Tool Tracking

For the estimation and tracking of the instrument pose, the EKF is used.
Kalman filtering allows combining visual information from the endoscope
with the robot kinematics [85]. The entire formulation is referred to PSM2
and the subscript 2 is omitted in this subsection.
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The filter provides an estimate of the tool tip pose ζ = [pt, qt]
T , being pt

the true tool position, and qt = [ηt, εt]
T its quaternion-based true orientation

in the base frame Fb. The prediction step provides a preliminary estimation
of the instrument pose through the linear and angular velocities of the gripper
provided by the manipulator kinematics. Then, the vision-based estimated
pose is used in the filter correction step. The process dynamics for the state
vector ζ is given by: ṗt = vg + S (ωg) rgt + np

q̇t =
1

2
Ω (ωg) qt + nq

(5.1)

where [vg,ωg]
T are the linear and angular velocity of the gripper in Fb, S(·) is

the skew-symmetric operator, rgt is the position vector of the tool tip respect
to the gripper, n = [np,nq]

T ∼ N (0,N) is the process noise and

Ω (ω) =

[
0 −ωT
ω S (ω)

]
. (5.2)

The error state vector is defined as ζ̃ = [p̃, δθ̃]T . The orientation error δθ̃ is
the 3× 1 small-angle approximation vector of the quaternion orientation error.
The vision algorithm computes the 3D pose of the tool tip, so the measurement
model is given by:

y = ζ +m (5.3)

wherem ∼ N (0,M) is the measurement noise. Then:

F =

[
S (ωg) O3

O3 S (ωg)

]
; H =

[
I3 O3

O3 I3

]
(5.4)

where F and H are respectively the control and measurement matrix used in
the EKF implementation. The output of the EKF consists in the current pose
of frame Ft of PSM2 with respect to the base frame Fb.

5.2.4 Virtual Fixtures Generation

The collision avoidance between the two tools is ensured by the application of
a FRVFs. To this purpose, the VF is defined as the swept surface along the tool
axis, the forbidden region is around the PSM2. The VF has a cylindrical shape
with a radius that is double the tool radius.



5.3. EXPERIMENTAL EVALUATION 51

Assuming that the last two joints are kept still, the cylinder axis direction
corresponds to zt2 axis of Ft2 tracked by the EKF. The current pose of PSM1
is tracked in Fb1 using the dVRK kinematics and then mapped in Fb2 through
the transformation matrix T b2b1 . The minimum distance between the PSM1 tool
tip position x and the cylindrical FRVFs corresponds to the length of the line
segment which joins perpendicularly the point to the axis minus the radius of
the cylinder. A constraint enforcement method is defined, consisting in the
application of a spring-damper like force:

fV F (x̃, ˙̃x) = −KV F x̃−DV F
˙̃x (5.5)

where x̃ = xd − x is the displacement between the point xd, belonging to
the constraint geometry having minimum distance from x. The matricesKV F

and DV F are properly designed diagonal and positive definite. The external
force is not directly measurable, it is estimated by resorting to a non-linear
dynamic observer [17], [75], and [76]. Finally, the force imposed by the VF is
mapped on the MTM, so that it exhibits a repulsive behavior and pulls the robot
end-effector away from the forbidden region. The MTM impedance controller
exhibits a closed-loop behavior that can be described by

M ¨̃x+ D̂ ˙̃x+KV F x̃ = fh (5.6)

where D̂ = D+DV F contains the damping assigned both by the impedance
control and the constraint enforcement method.

5.3 Experimental Evaluation

The experimental validation is performed on dVRK robot, which is controlled
at the MTM by an impedance controller, with mii = 1.5 and dii = 0, being
the (i, i) entries of the matrices M and D, respectively. The DV F has been
adapted according to the stiffness variation such that dV F,ii = 2

√
miikV F,ii

where dV F,ii and kV F,ii are the diagonal values of the matrices DV F and
KV F , respectively and kV F = 8 N/m, as in [17]. The dVRK dynamic pa-
rameters are identified in [55]. During the experiments, two Endowrist®da
Vinci tools are used: curved scissors and PrograspTM forceps. The kinematics
data from the dVRK are acquired at 200 Hz, while the vision-based system es-
timated the tool position at the camera frame rate of 25 Hz. The EKF approach
allows overcoming this limitation, providing tool pose at 200 Hz. The tool
segmentation is performed using GPU implementation on an NVIDIA®GTX
1080 Ti to speed up computation.
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Figure 5.3: Two different frames of the second evaluation experiment; PSM1 tool
holds the center of the circle; PSM2 moves following the circle.

5.3.1 Tracking Method Evaluation

The proposed tracking method is preliminarily evaluated on a simple task, exe-
cuted with the dVRK robot. The task is planned ad hoc to reduce the variability
introduced by the telemanipulation, and, thus, to obtain a reference target to
measure the error. Two specific points, placed on a phantom tissue at a dis-
tance of 15 mm, are recorded offline from kinematic data, by holding the tool
steady in the given positions. In this condition, the position error introduced by
the kinematics, in the two selected points, is minimized since the tool is fixed
and the interaction force with the phantom goes towards zero. After that, a lin-
ear path is defined analytically between the two points to serve as the ground
truth for the evaluation. The experiment conducted to evaluate our tracking
method, consists of moving the tool, in teleoperation mode, along the defined
linear path drawn on the phantom. The task is performed slowly, with a dura-
tion of 12 seconds, to minimize the error along the linear path introduced by
telemanipulation. During the task execution, the surgical tool is tracked using
the EKF method. Then, the estimated pose is compared to the target linear
path, obtaining mean absolute errors of 0.126 ± 0.08 mm along the x-axis,
and 0.02± 0.01 mm along the y-axis. The results demonstrate the accuracy of
our tracking method. Furthermore, we computed the error obtained just using
kinematics information, obtaining mean absolute errors of 0.135 ± 0.08 mm
along the x-axis, and 0.02± 0.01 mm along the y-axis. As expected, the pose
error is similar to the one obtained with our tracking method because of the
absence of interaction with the environment.
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Figure 5.4: First evaluation experiment. Duration: 20 seconds. Time histories of:
(Blue) Distance between surgical tools; (Red) Related estimated force norm.

5.3.2 Collision Avoidance Evaluation

The collision avoidance strategy is evaluated in two different tasks. During
the first evaluation test, the PSM1 tool is fixed and the PSM2 is moved by the
user in teleoperation mode towards PSM1. The collision avoidance strategy
is applied during the entire duration of the test. Figure 5.4 shows the distance
between the two surgical tools, computed considering the proposed tracking
method, and the related haptic force norm rendered to the user through the
master side (MTM) during the task. The maximum reached force is 3.2 N.

The second evaluation test consists of a human subject study to show sig-
nificant differences in performance caused by the introduction of force feed-
back. The study involves 12 subjects divided into two groups, 6 experienced
and 6 novice surgeons, based on self-evaluation about their experience in the
use of da Vinci®Robotic system for minimally invasive surgical procedures.
The study is articulated in two experiments using the dVRK robot in teleop-
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eration mode. Taking inspiration from [19], the test simulates burning tissue
with an electrocautery device. During each test, the subject keeps the PSM1
centered in the middle of a circle with a diameter of 20 mm. Meanwhile, the
PSM2 has to follow the circular path for 270◦ from a definite starting point,
as shown in Fig. 5.3. In the first experiment, the subjects perform the test 5
times moving the surgical tool in free motion. In the second experiment re-
ferred to as VF constraint tasks, they perform the same task 5 times with the
proposed collision avoidance constraint applied. Each task has an average ex-
ecution time of 10 seconds. Each subject is asked to try the test in advance, to
become familiar with the task itself and with the dVRK platform. The mini-
mum distance between the tools is considered as a performance parameter and
it is computed using the proposed tracking method, in the VF constraint test
the maximum force felt during the task is also computed.

Figure 5.5 and Fig. 5.6 show the mean values of the minimum distance
between tools for novice and expert subjects during free motion and VF con-
straint tasks. The error bars represent the standard error of the means. To
demonstrate the statistical relevance of the results, a comparison is made be-
tween the mean values of minimum distance, through a statistical unpaired
t-test, with a significance level α = 0.05. As presented in Table 5.1, the test
shows statistically significant differences between the means for all subjects in
the novice group. Moreover, it presents an increase in the minimum distance
values of ∼ 10% in collision tests for free-hand tests. The estimated force
norm, rendered to the novice users through the master side (MTM), during the
collision avoidance tasks, has a mean value of 3.1822± 0.5368 N. The expert
group presents a mean force norm of 3.0493± 0.3629 N.

Table 5.1: Maximum force and t-test results on minimum distance for novice
and expert users.

Novice test p FM [N] Expert test p FM [N]
1 1 0.0044 2.4416 1 0 0.1352 3.4527
2 1 0.0127 3.0749 2 0 0.0856 2.8175
3 1 0.0030 3.3411 3 0 0.8286 3.5239
4 1 0.0219 2.8188 4 0 0.8757 2.6180
5 1 0.0206 3.9998 5 0 0.1140 3.0035
6 1 0.0012 3.4170 6 0 1 2.8800
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Figure 5.5: Novice subjects: Mean values of minimum distance between tools with
standard error bars.

Figure 5.6: Expert subjects: Mean values of minimum distance between tools with
standard error bars.

5.3.3 Discussion

A real comparison between the EKF-based tracking method and the kinematic
measurements cannot be reliable without the use of an external sensor provid-
ing the ground truth of the tool pose. Indeed, we point out that the method
used in Sect. 5.3.1 to evaluate the tracking algorithm is affected by the error
due to the low resolution of the camera, and by the variability given by telema-
nipulation, even if it is minimized thanks to the ad hoc designed experiment.
The experiments minimize the interaction with the environment introducing
low position error in kinematic data, but ensuring the correct execution of the
tool’s movement following the defined path. In future works, we aim to sig-
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nificantly improve the validation method through a more advanced calibration
technique, and we aim to compare the tracking method with the kinematics
measurements using an external camera to measure the true tool pose that can
be considered as more appropriate ground truth for tracking evaluation. Fig-
ure 5.4 shows the repulsive force felt at the MTM when the distance between
PSMs decreases. The method to generate the force is designed to have small
forces values such as to be slightly perceived by the surgeon. This is because
the purpose is not to interfere with the surgeon’s actions, but to serve as an
alarm to remind the presence of the other instrument in the proximity. Indeed,
during the experiments, the maximum value of the force norm is 3.2 N.

The human subject study has shown a statistically significant difference
regarding the mean of the minimum distance between the tools for the novice
subjects. The VF test outperformed the free-hand test and this result suggests
that feeling a haptic force during the task allows maintaining a safe distance
between the surgical tools. On the contrary, in the free-hand test, the subject
has no force feedback during the task and could dangerously reduce the dis-
tance between the tools. The maximum reached force is lower than 4 N and it
does not create variation in the task performance.

As concern the expert subjects, the test does not show a statistically sig-
nificant difference in the VF constraint task concerning the free motion task.
Nevertheless, they were asked to compile the NASA-TLX questionnaire [99]
to assess the perceived workload. The results of the questionnaires shown in
Fig. 5.7 assess that the VF constrained task is not mentally, physically, and
temporally demanding and the force feedback does not affect negatively the
performances. On the contrary, it represents a comfortable reminder of the
collision risk, that diminishes the user’s mental workload. Similar results were
obtained for novice surgeons.

5.4 Conclusion

The work presented in this chapter introduces a method based on haptic guid-
ance and VFs that allows avoiding surgical tools collision in MIRS. A marker-
less algorithm allows estimating the PSM position and orientation, using kine-
matic and visual information. The PSM estimated pose is used to generate a
FRVFs, that aims to avoid collision between the two instruments through a re-
pulsive force felt at the MTM during the surgical task execution. The proposed
strategies are evaluated through multiple experiments on dVRK, showing good
results in improving novice surgeon’s performance. Furthermore, the use of
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Figure 5.7: Radar graph of the TLX results on expert users during VF tasks.

VF allows also expert surgeon to better focus on the task, as far as the haptic
force are small enough to suggest that the tools are dangerously close without
affecting the performance. Therefore, the method can be considered effective
both in a training stage of novice surgeons, as well as when the level of ex-
pertise increases. The goal for future works is to improve the accuracy of the
tool pose estimation. For this purpose, a more advanced method for hand-eye
calibration and 3D reconstruction will be considered.



Chapter 6

Multiple Tasks Execution using
Control Barrier Functions in
Surgical Robotics

Robot-aided surgical procedures involve a sequence of complex tasks, requir-
ing dexterous movements and safety requirements that still depend on the sur-
geon’s skills. Executing different tasks simultaneously could give the robot the
ability to efficiently accomplish numerous assignments in safety conditions.

The present chapter introduces a multiple tasks execution framework for
surgical robots, based on an optimization approach with tasks definition and
execution achieved by means of CBFs. The proposed method allows easier
execution of complex surgical tasks involving guidance and forbidden con-
straints executed at the same time and with different priorities, while DQ al-
gebra allows efficient geometrical representation of the surgical environments.
An experimental session is considered to test the entire method through differ-
ent experiments in simulation and real environments.

6.1 Introduction

MIRS and RAMS require the surgeon to work with very high precision in a
safety-critical environment and the impact of medical robots in surgical pro-
cedures is well known. Although, surgical robots cannot perform complex
tasks relying on human operators to skillfully manipulate the robotic system
and accomplish the above requirements. The ability to perform multiple tasks
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is a crucial robot capability that could join task accomplishment and safety
condition requirements. Surgical tasks are always composed of a series of sub-
tasks that need to be executed with different priorities, reflecting environmental
changes in the surgical scene. For example, MIRS dissection procedures re-
quire high-precision cutting with safety margins, avoiding tissue damages and
possible collision between surgical tools [88]. While in RAMS, microvascular
anastomosis requires a specific sequence of actions, involving the manipula-
tion of small blood vessels, needle insertion and knot tying.

Frequently, an increase in safety and a reduction in mental workload has
been achieved through the introduction of active constraints, that can prevent
the surgical tool from crossing a forbidden region [100], or similarly gener-
ate constrained motion to guide the surgeon on a specific path ([17, 88]) or to
accomplish robotic autonomous tasks. A large number of works show good
results in the creation of active constraints but the complex surgical task re-
mains not easy to implement, in particular the one that considers guidance
and forbidden constraint at the same time. Recently, CBFs are successfully
used to ensure the safety of robots in dynamic environments [101]. Originally
formulated through the definition of a control input solving a simple convex
optimization problem, CBFs could be extended to multiple task accomplish-
ment.

In this scenario, a general method for multiple tasks execution could no-
tably improve the quality of intervention in complex surgical tasks performed
by the robot autonomously or allow a more efficient way for robot teleopera-
tion.

6.1.1 Related Works

Multiple works were presented to introduce active constraint in surgical
robotics for task and safety accomplishment, as presented in Chapter 2. The
most powerful method is to couple shared control techniques like VFs to hap-
tic guidance, rendering force feedback to the surgeon when the robot reaches
a defined target, as exposed in the previous chapters. Selvaggio et al. pro-
pose an online VF generation and adaptation guiding the surgeon during pro-
cedures [17], and the same approach is extended for surgical tool collision
avoidance in [100]. Nonetheless, a complex design of the master interface
makes force feedback particularly challenging. Moreover, most of these work
encounter particular difficulties in VF geometrical definition caused by the
complex surgical environments, limiting the interactions between the robot
tool tip and the environment itself. Constrained optimization is the most suit-
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able approach to design motion control laws on the surgical robot. Some works
consider VFs based on quadratic programming, defining non-linear constraint
or linear approximation without considering closed-loop stability. The ap-
proach proposed in [22] represents a novel unified method for robot control
under teleoperation. The framework uses QP programming for closed-loop in-
verse kinematics and dynamic VFs are generated by adding linear constraints
to the QP problem using sample geometrical primitives modeled via DQ al-
gebra. Constraint velocity compensation is given considering a fixed and not
controllable term called residual [23] and complex surgical tasks are particu-
larly challenging with the proposed approach [102].

CBFs have been successfully used for robots control in multiple do-
mains [101]. Other chapters in this thesis exploit the use of VFs to implement
various types of tasks in a teleoperated environment, like collision avoidance or
suggestion of a preferred path. Nonetheless, this approach does not consider
the system dynamics, that can inevitably affect the constraint definition, not
guaranteeing adherence. A modern formulation for dynamical systems safety
is presented in [103] involving the forward invariance property of a subset of
the state space of the system. Additionally, it has been shown that they can be
also employed to achieve set stability in [104]. Finally, Notomista et al. pre-
sented a set-theoretic approach to multi-task execution and prioritization [105].
The paper introduces an important method extending set-based tasks, encoding
them using CBFs, and executing them by means of a constrained optimization
problem. Moreover, this approach could be extended to more complex tasks
as required in surgical applications, adding more articulated geometrical infor-
mation as the one obtained from the surgical scene.

6.1.2 Contribution

This chapter proposes a multiple tasks execution framework for different sur-
gical robots. The method uses an optimization-based approach with tasks def-
inition and execution achieved utilizing CBFs. The technique allows the ac-
complishment of complex surgical tasks by defining constraints that guide the
robot’s motion or prevent it from entering a forbidden region. Different assign-
ments can be created involving joint limits and obstacle avoidance, creating
forbidden areas to prevent damages to robot structure and the surrounding tis-
sues, and defining specific paths the robot has to follow. Moreover, the method
allows the constraint to evolve to reflect environmental changes and endoge-
nous changes of the system. DQ algebra is exploited creating a more efficient
geometrical representation of the surgical scene. The same framework can be
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adopted both for autonomous task execution as to enhance teleoperation con-
trol input. In this case, the method can be integrated with a haptic feedback
approach on the robot master side. Ultimately, task prioritization allows the
possibility of autonomously switching the priority of tasks during their execu-
tion.

6.2 Dual Quaternion Algebra

Like in [22, 23, 26, 106], this work uses DQ algebra which presents several
advantages, like no representational singularities, a more compact definition.
Moreover, this approach is useful for describing geometrical primitives, like
lines and planes. Quaternion concept was first introduced by Hamilton [107]
with the following representation Q = {η, ε}:

Q , {η + îεx + ĵεy + k̂εz : η, εx, εy, εz ∈ R}, (6.1)

with i, j, k as imaginary units and a unit-quaternion is constrained by the con-
dition: η2 + ε2x + ε2y + ε2z = 1. A rotation can be represented by a single unit
norm quaternion r ∈ S3 as:

r = cos(
φ

2
) + v sin(

φ

2
), (6.2)

where φ ∈ R, where S3 , {r ∈ Q : ||r|| = 1}, φ ∈ R and v are the axis and
angle of rotation. A dual number is defined as: a+ εb, where a, b ∈ R and ε is
a dual unit with ε2 = 0 but ε 6= 0. Similarly, a dual quaternion is a dual entity
with quaternion components and its set is defined as:

Q , {b+ εb′ : b, b′ ∈ Q, ε2 = 0, ε 6= 0}, (6.3)

where, Q is a single quaternion defined in set (6.1). Giving a DQ b ∈ Q as
b = η1 + îεx1 + ĵεy1 + k̂εz1 + ε

(
η2 + îεx2 + ĵεy2 + k̂εz2

)
, the operators P

(primary part) and D (dual part) are defined as:

P , η1 + îεx1 + ĵεy1 + k̂εz1,
D , η2 + îεx2 + ĵεy2 + k̂εz2,

and the real and imaginary parts are:

Re(b) , η1 + εη2,

Im(b) , îεx1 + ĵεy1 + k̂εz1 + ε
(
îεx2 + ĵεy2 + k̂εz2

)
.
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DQ algebra allows defining a compact representation of the rigid motions
with a single 8-dimensional vector. A rigid rotation is described by a quater-
nion (6.2) and a position (x, y, z) in R3 can be expressed by a quaternion
p =

(
xî+ yĵ + zk̂

)
∈ Hp, since the set Qp , {p ∈ Q : Re (p) = 0} is iso-

morphic in R3. Finally a tridimensional pose of a rigid body can be expressed
as a unit dual quaternion x ∈ S:

x = r + ε
1

2
pr, (6.4)

where, S , {x ∈ Q : ||x|| = 1} with x ∈ Q, p ∈ Qp and r ∈ S3 are the
position and orientation respectively. As in [22], in this chapter the operator
vec4 and vec8 are used to map single quaternion in R4 and dual quaternion in
R8 respectively.

6.2.1 Kinematic Model in DQ

Considering a n DoFs manipulator with a base reference frame defined as
Fbase, the first robot joint corresponds to F0. The robot has n links and
i = 0, . . . , n − 1 joints, the dual quaternion transformation between two con-
secutive joints is xii+1 (qi), where q ∈ Rn is the generalized joint coordinates
and each transformation depends on the correspondent joint value. Two addi-
tional transformations between the word reference frame and the base frame
xbase0 and between the last joint and the robot end-effector xnee, can also be
considered. Thus, forward kinematics is computed using post-multiplication
as:

xbaseee (q) = xbase0 x0
1 (q0)x

1
2 (q1) . . .x

n−1
n (qn−1)x

n
ee. (6.5)

Each DQ transformation xii+1 (qi) between two consecutive links is de-
fined multiplying four specific transformation, one for each DH parameter.
xbaseee is the DQ representing position and orientation of robot end-effector
with the respect of the base reference frame.

6.2.2 Differential Kinematics and Jacobian in DQ

The differential kinematics is defined as:

vec8ẋ(q) = Jx(q)q̇, (6.6)

where ẋ(q) ∈ Rm is the DQ vector of task space velocities that depends on
robot coordinates q ∈ Rn and Jx(q) ∈ Rm×n is the DQ Jacobian. Consider-
ing the forward kinematics in (6.5), the partial derivative with respect to joint
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value qi can be obtained using the chain rule as in [106]:

δ(xbaseee (q))

δqi
=
xbase0

∏n−1
i=0 x

i
i+1 (qi)x

n
ee

δqi
=

= xbasei−1
δ(xii+1 (qi))

δqi
xi+1
ee , (6.7)

Therefore, the Jacobian for a given kinematic chain is a 8× n matrix:

Jx(q) =

[
vec8

(
xbase0

δ(x0
1 (q0))

δq0
x1
ee

)
, . . . ,

, . . . , vec8

(
xbasen−1

δ(xn−1n (qn−1))

δqn−1
xnee

)]
. (6.8)

6.3 Multiple Tasks Execution

In this section, the objective is to define a task-execution method that allows
the robot to accomplish different tasks, involving both the position and orien-
tation of the robot. Some of them are defined in joint space, i.e avoiding joint
limits or simply assume a specific joints configuration. Other tasks involve
the definition of a point or path in Cartesian space the robot has to follow, or
definite orientation the robot end-effector has to reach. More complex tasks
concern collision and obstacle avoidance, creating forbidden areas to prevent
damages to robot structure or the surrounding tissues. In particular, surgical
procedures often require a combination of multiple tasks to accomplish con-
strained or guided assignment in joint or Cartesian space.

6.3.1 Tasks Definition

Consider a generic task variable σ(t) ∈ Rm for a n DoFs manipulator illus-
trated in Section 6.2.1, that related to robot joint variable as σ(t) = f(q(t)).
The task is considered accomplished if the value σ(t) is controlled to reach
a desired value σd(t). The relationship between task variable velocities and
robot joint velocities is defined by (6.6) as: vec8σ̇ = Jσq̇. The task can be
achieved by integrating the locally inverse mapping and solving iteratively the
closed-loop kinematics as in [7]:

q̇d = J∗σ(σ̇d +Kpvec8(eσ)), (6.9)
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where, q̇d the corresponding joint references for σd, J∗σ is the Jacobian
pseudo-inverse that satisfies the four Moore-Penrose conditions, Kp ∈ Rm×m
is a positive-definite gain matrix and eσ = σ − σd is the task error whose
dynamics is reduced. In case of robotic system redundancy a null projector
operator is add to (6.9): (In−J∗σJσ)q̇0, where In is an n×n identity matrix
and q0 ∈ Rn a vector of arbitrary joint velocities.

This approach could be extended to accomplish multiple tasks at the same
time and the concept of set-based task execution is introduced in [108], ex-
tending multiple tasks inverse kinematic control. The objective is to keep the
task variable in a specific set C rather than leading it to the desired value. This
work uses extended set-based tasks introduced in [105], in which a specific
set-based task characterized by a set C is expressed as the super-level set of a
smooth function h : Rn → R as:

C = {σ ∈ T : h(σ, t) ≥ 0}. (6.10)

where, T is the task space. Based on this definition, an extended set-based task
can be declared as keeping a desired set invariant, i.e. ensuring that the state
of the robot never leaves the set and is asymptotically stable. Considering the
desired function to track σd related to joint velocities by the relationship (6.6),
the function h in (6.10) can be defined as:

h(σd, t) = −1

2
||eσ||2, where eσ = σ − σd(t), (6.11)

σd is a continuous function of time and h is a continuously differentiable
with respect to both σd and t, rendering C asymptotically stable and forward
invariant. Therefore, the set C = {σ ∈ T : σ = σd(t)} implying that its
invariance corresponds to the task σd being accomplished, as in [105].

6.3.2 Tasks Execution

The task execution is accomplished by turning forward invariance of subsets of
the state space of the robots into a control input constraint by using CBFs. The
CBFs proprieties of a smooth function h : Rn → R ensure the forward invari-
ance of its the super-level set and the accomplishment of the related task [101].
The robot is modeled as a non-linear affine control system accessible through
a task variable σ as: {

ẋ = f(x) + g(x)u
σ = k(x),

(6.12)



6.3. MULTIPLE TASKS EXECUTION 65

where x ∈ X ⊆ Rn is the system state, u ∈ U ⊆ Rp is the control
input in a set of admissible control values U , σ ∈ T is the system output, f
and g are Lipschitz-continuous vector fields, and k : Rn → T is a smooth
map representing the task forward kinematics. The kinematic model of robotic
manipulator is considered, assuming that its joint velocities are controllable. In
this case, the state x is the vector of joint coordinates q and the input u is the
vector of joint velocities q̇. From definition of CBFs in [101], a continuously
differentiable function h : X ⊆ R≥0 → R with a super-level set C ⊂ X ⊂ T
is defined as a time-varying control barrier function if there exists a Lipschitz
continuous extended class K∞ function γ for all δ ∈ X , such that

sup
u∈U

{
δh

δt
+
δh

δσ

δσ

δx
f(x) +

δh

δσ

δσ

δx
g(x)u

}
≥ −γ(h(σ)). (6.13)

Considering the function h as defined in (6.11) and control input set a u = q̇,
the condition in (6.13) can be expressed as:

sup
q̇∈U

{
eTσσ̇d + eTσJσq̇

}
≥ −γ(h(σd)). (6.14)

According to (6.14), describes that CBFs ensure forward invariance and
asymptotic stability of the set C by enforcing the constraints on the joint ve-
locities [105]. If h is a CBF on X , then any Lipschitz continuous controller
q̇ ∈ V(q, t), where V(q, t) = {eTσσ̇d + eTσJσq̇ + γ(h(σd) ≥ 0}, for the
robotic system, renders the set C forward invariant. Additionally, the set C is
asymptotically stable in X .

Ultimately, the minimum control input subject to a set of constraints that
enforce the execution of tasks that is obtained by solving the following opti-
mization problem formulated to synthesize a velocity controller q̇:

minimize
q̇

‖q̇‖2

subject to eTσ(t) Jσ(q)q̇ ≥
− γ(h(σd, t))− eTσ(t)σ̇d(t),

(6.15)

The presented formulation allows the robot to execute different tasks au-
tonomously in a surgical environment by computing the h-function h(σd, t)
depending on the error eσ and the dual quaternion Jacobian Jσ related to the
specific desired task variable. The same framework can be adopted even if
the robot already has a nominal control input, which is usually represented
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by teleoperation control input in surgical robotics. In this case, the goal is to
modify the nominal controller in minimal way so as to satisfy the defined con-
straint [101]. The cost function in the optimization problem becomes the dif-
ference between the input control q̇ and the nominal control q̇n, as ‖q̇− q̇n‖2.

6.3.3 Multiple Tasks Execution and Prioritization

The execution of multiple tasks can be obtained by adding more constraints
to the optimization problem. Considering a set of different tasks Tm with
m = 1, . . . ,M , that need to be executed, the optimization problem is enriched
by adding M constraints enforcing the execution of tasks:

minimize
q̇

‖q̇‖2

subject to A(h(σ, t))q̇ ≥ b(h(σ, t)),
(6.16)

where,A(h(σ, t)) ∈ Rm×n and b(h(σ, t)) ∈ Rm×1 defined as:

A =

 eTσ1 Jσ1
...

eTσM JσM

 , b =

 −γh1 − eTσ1σ̇d1
...

−γhM − eTσM σ̇dM

, (6.17)

The multi-task prioritization proposed in [105] is adopted, that ensures
simultaneously multiple tasks execution and introduces the possibility give
different task priorities. Task prioritization is established introducing a slack
variable δm to each task, which denotes the extension quantity to which the
constraint corresponding to task Tm can be relaxed. Considering two different
tasks Tm and Tn, an higher priority to Tm than Tn is given by using an addi-
tional constraint defined as δm ≤ δn/k where k > 1. Prioritization between
tasks are encoded by adding a single linear constraintKδ ≥ 0 enforced, where
K(t) is a prioritization matrix depending on k which specify the prioritization
stack among the tasks. This formulation ensures that K(t) is Lipschitz con-
tinuous in time, then the controller q̇∗(t) is Lipschitz continuous in time, as
solution of the following optimization problem:

minimize
q̇

‖q̇‖2 + l‖δ‖

subject to A(h(σ, t))q̇ ≥ b(h(σ, t))

K(t)δ ≥ 0,

(6.18)

where, l > 0 is a scalar factor and δ = [δ1, . . . ,σM ]T is the vector of slack
variables corresponding to each task.
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In this chapter, a time-varying prioritization matrix K(t) is adopted. Un-
like [105], the priority between tasks is switched automatically based on the
specific task to accomplish. The robot changes the prioritization matrix ac-
cording to the value of function h. For example, the robot has to accomplish
two different tasks, T1 reach a specific point in workspace and simultaneously
T2 avoid an obstacle. If the distance between the robot and target point is
higher than the distance between robot and obstacle, a higher priority is pro-
vided to T2 rather than T1 allowing the robot to first avoid the obstacle and then
reach the target point. Priorities switching may cause issues due to disconti-
nuities in the controller that may appear during the transient. The proposed
formulation guarantees sufficient conditions to ensure continuity in control in-
put during priority switching, as demonstrated in [105].

6.4 Experimental Validation

The experimental section involves results on dVRK robot and
Symani®Surgical System. The session includes a set of tests that repli-
cate the realistic tasks required in MIRS and RAMS. The tests are performed
utilizing the CoppeliaSim physics simulators of those systems and replicated
using real dVRK robotic platform. Kinematic descriptions of the two robotic
systems are provided in Section 2.4, considering only a single PSM or robotic
arm of Symani®Surgical System. In all tests, the task spaces are joint space
and Cartesian space.

Let consider ẋ ∈ R8 as the DQ vector representing end-effector position
and orientation in Cartesian space, and q ∈ R6 as the vector of the robot gen-
eralized coordinates in which the last degree of freedom, corresponding to the
opening and closing motion of the gripper, is not considered. Kinematic model
and DQ algebra are defined using DQ Robotic C++ library in [102] and the
optimization problem is solved using IBM ILOG CPLEX. The dVRK robot is
controlled using the open-source control software developed in [52, 53], that
is based on ROS software layer to interface to the dVRK. While for simulation
tests, the robot models are controlled on the CoppeliaSim scene using embed-
ded scripts and ROS topics. In detail, Section 6.4.1 describes the proposed
evaluation tests and the corresponding implemented tasks, while the results of
the simulation and real tests are exposed in Section 6.4.2, Section 6.4.3 and
Section 6.4.4 respectively.
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6.4.1 Evaluation Tests Definition

Different tests are created to replicate basic surgical movements. The valida-
tion tests are divided into multiple subtasks, that are implemented as follows:

• Joint Limits Avoidance

Joint limits avoidance is accomplished by forcing joint variables to stay
within an upper and a lower bound. The h-function for each joint is:

hlim,i =
(qmax,i − qi)(qi − qmin,i)

(qmax,i − qmin,i)2
, (6.19)

where, qi is the i-th joint variable, qmax,i and qmin,i are the upper and
lower bound of the i-th joint. In this case Jσ(q) is δh/δq.

• Reach Target Position

Following the formulation in (6.11) and in (6.15), the position control
task can be defined through the following h-function:

hpos = −1

2
||vec4(pe)− vec4(pd)(t)||2, (6.20)

where, pe and pd(t) are robot end-effector and target position in Carte-
sian space. While Jacobian parameter Jσ(q) is set as the translational
part of the robot Jacobian Jpos.

• Reach Target Orientation

Orientation control task is defined considering the unit quaternion re =
{ηe(q), εe(q)} and rd = {ηd, εd} associated to robot end-effector and
target rotation in Cartesian space. Therefore, the orientation error can be
described in term of quaternion as ∆r = {∆η,∆ε} = rd ∗r−1e . Hence,
the orientation task is expressed as following:

hori = −1

2
||ηe(q)εd − ηdεe(q)− S(εd)εe(q)||2, (6.21)

where S(·) is the skew-symmetric operator. While Jacobian parameter
Jσ(q) is set as the rotational part of the robot geometric Jacobian Jrot.
The orientation error could be expressed also using other end-effector
orientation representation, like Euler angles or angle and axis. It is worth
remarking that, unlike Euler angles or axis and angle representation,
a single rotation by the angle −φ about the axis −v is defined by the
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same quaternion as that associated with the rotation by angle φ about
the axis v. Thus, the unit quaternion representation allows solving any
non-uniqueness and singularity problems.

• Obstacle Avoidance

Obstacle avoidance is obtained preventing the tool tip from colliding
with an obstacle that defined as a cylindrical shaped object. As in [23,
26], the central axis of the obstacle is described as a Plücker line l ∈ Qp,
given by a unit DQ: l = l+ εm, where l is the unit norm line direction
and m = pl × l is the line moment with pl as the object point on the
line. The obstacle avoidance task is defined as:

hobs =
1

2
||vec4(pe × l−m)T ||2, (6.22)

where, pe is the robot end-effector position in Cartesian space. The
Jacobian parameter is obtained computing the time derivative of hl de-
pending on joint velocities:

Jobs = vec4(pe × l−m)TS(l)TJpos, (6.23)

where, S(l) is the skew-symmetric operator of l.

• Forbidden Region Constraint

Forbidden regions, in which the robot is not allowed to go, are created
considering a plane as boundary. As in [23, 26], plane representation in
DQ space is given by π , nπ + εdπ, where nπ ∈ Qp is the normal
to the plane and dπ ∈ R is the euclidean distance between an arbitrary
point pπ and the origin of a reference frame on the plane. The constraint
is expressed by the CBF function:

hp =
1

2

∥∥∥∥−(penπ) + (nπpe)

2
− dπ

∥∥∥∥2 , (6.24)

where, pe is the robot end-effector position in Cartesian space. The
Jacobian parameter is obtained computing the time derivative of hp de-
pending on joint velocities:

Jp = (vec4nπ)TJpos, (6.25)

where, Jpos is the translational part of the robot Jacobian.
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The described tasks are considered to create three different evaluation tests,
in which joint limits avoidance is always executed with the highest priority
considering it as a safety-critical task:

Test 1 Reach Target: the robot tool tip is commanded to reach a specific
target in position and orientation, avoiding joint limits during the move-
ment. In this test, position and orientation tasks have the same priority.

Test 2 Reach Target in Position with Plane Constraint: the robot tool tip
has to reach a specific target in position, avoiding joint limits and pre-
venting it from crossing the lower bound of the workspace delimited by
a plane. In this case, the position task has a lower priority compared to
forbidden region avoidance. Therefore, the prioritization matrix is set as
K(t) = [0 − 1 1/k], with k > 1.

Test 3 Reach Target in Position with Obstacle Avoidance: the robot is com-
manded to reach a specific target in position, avoiding joint limits and
preventing the robot from colliding with an obstacle. Position task and
obstacle avoidance have different priority. In particular, if dtarget > dl,
where dtarget and dl are the distance between the robot end-effector and
target and the distance from the obstacle respectively, the prioritization
matrix is defined asK(t) = [0 −1 1/k], with k > 1. Otherwise, when
dtarget < dl, the matrix becomesK(t) = [0 1/k − 1].

6.4.2 Simulation Test Results on dVRK Robot

Figure 6.1 shows consecutive frames of the ”Reach Target” Test on dVRK in
simulation. During this test, the target point is positioned ∼ 0.03 m from the
robot and its reference frame is rotated by 90◦ around z-axis with respect to the
end-effector frame. The CBFs values are represented by hpos and hori. During
the test, the Euclidean and the angular distance between the robot end-effector
and the target reference frame are measured. In Fig. 6.1, hpos and hori are
driven to 0 executing the position and orientation tasks during the considered
test, as confirmed by the computed distances from the target.

Figure 6.2 presents the ”Reach Target with Plane Constraint” Test. The
target point is placed ∼ 0.02 m beyond the plane, which identifies a region
that is ∼ 0.08 m distant from the robot. The trends of CBFs values during task
show that hpos reaches a constant value, stopping at a distance of ∼ 0.02 m
from the target, while hp goes to 0 showing that the robot does not reach the
target point that is placed in the forbidden region.
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Figure 6.1: dVRK ”Reach Target” Test in simulation: Blue line represents the CBF-
function of position task, the red line is the CBF-function of orientation task, green
line expresses the distance between the robot end-effector and target position, while
the purple line is the angular distance between end-effector reference frame orientation
and target reference frame orientation.

The ”Reach Target with Obstacle Avoidance” Test is proposed in Fig. 6.3.
In this case, the target point is located at a distance of ∼ 0.04 from the ob-
stacle. The CBF value hpos goes to 0 executing the position task as justified
by the decreasing distance from the target, while hobs and the correspondent
distance from the obstacle decreases as the robot moves closer to the object
and then increases assuming a constant value when the robot approaches the
target point.
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Figure 6.2: dVRK CBFs values in ”Reach Target with Plane Constraint” Test in
simulation. The blue line represents the CBF-function of the position task, while the
red line is the CBF-function of the forbidden region avoidance task, the green line
expresses the distance between the robot end-effector and target position, while the
purple line is the distance between the end-effector and the plane.

6.4.3 Simulation Test Results on Symani®Surgical System

A ”Reach Target” Test is also performed on Symani®Surgical System in the
simulation environment, as shown in Fig. 6.4. Similarly to dVRK tests, dif-
ferent values are computed during the test, including CBFs functions hpos and
hori, the Euclidean and angular distance between the robot end-effector and
the target reference frame. Also in this case, the CBFs values hpos and hori
are guided to 0 executing the position and orientation tasks. The task accom-
plishment is justified by the distances trends from the target during the tests.

6.4.4 Test Results on Real dVRK Robot

The same tests presented in Section 6.4.2 are also performed on dVRK robot
trying to replicate a real surgical scene. Figure 6.5 illustrates the ”Reach Target
Test” on real dVRK. Similar to the simulation tests, the target point is posi-
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Figure 6.3: dVRK CBFs values of ”Reach Target with Obstacle Avoidance” Test
in simulation. The blue line represents the CBF-function of position task, while the
red line is the CBF-function of obstacle avoidance task, the green line is the distance
between the robot end-effector and target position, while the purple line is the distance
between the end-effector and the obstacle axis.

tioned∼ 0.1 m from the robot and its reference frame is rotated by 90◦ around
z-axis with respect to end-effector frame. The CBFs values (hpos, hori), the
Euclidean and angular distance between the robot end-effector and the target
are measured. The CBFs values follow the same trends, rapidly going to 0 and
accomplishing the position and orientation tasks, as shown by the correspon-
dent distances from the target in Fig. 6.5.

The ”Reach Target with Plane Constraint” Test is proposed in Fig. 6.6. In
this case, the forbidden region is represented by a plane positioned at 0.08
m from the robot end-effector and the target point is on a plastic phantom,
approximately 0.02 m beyond the plane. The hpos function reaches a constant
value, stopping at a distance of ∼ 0.02 m from the target, while hp goes to
0 showing that the robot does not reach the target point that is placed in the
forbidden region.

Ultimately, Fig. 6.7 shows the ”Reach Target with Obstacle Avoidance”
Test on dVRK. In the test, the target point is located on a plastic phantom at a
distance of ∼ 0.02 from the obstacle, consisting of a cylinder that could rep-
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Figure 6.4: Symani CBFs values of ”Reach target” Test in simulation. The blue
line represents the CBF-function of the position task, while the red line is the CBF-
function of the obstacle avoidance task, the green line is the distance between the
robot end-effector and target position, while the purple line is the distance between
the end-effector and the obstacle axis.

resent a soft tissue the robot is not allowed to touch during the procedure, for
example, a blood vessel. Like in the other tests, CBF position value hpos goes
to 0 executing the task eliminating its distance from the target. Correspond-
ingly, hobs decreases as the robot moves closer to the object and the obstacle
distance then increases assuming a constant value, showing that the robot tool
tip correctly reaches the target point avoiding the obstacle.
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Figure 6.5: ”Reach target” Test: Blue line represents the CBF-function of position
task, the red line is the CBF-function of orientation task, the green line expresses the
distance between the robot end-effector and target position, while the purple line is the
angular distance between end-effector reference frame orientation and target reference
frame orientation
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Figure 6.6: dVRK CBFs values in ”Reach Target with Plane Constraint” Test. The
blue line represents the h-function of position task, while the red line is the h-function
of forbidden region avoidance task, the green line expresses the distance between the
robot end-effector and target position, while the purple line is the distance between
the end-effector and the plane.
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Figure 6.7: dVRK CBFs values of ”Reach Target with Obstacle Avoidance” Test
in simulation. The blue line represents the CBF-function of position task, while the
red line is the CBF-function of obstacle avoidance task, the green line is the distance
between the robot end-effector and target position, while the purple line is the distance
between the end-effector and the obstacle axis.

6.5 Conclusion

The chapter presents a technique for multiple tasks execution on surgical
robots that ensures an easier accomplishment of difficult surgical proce-
dures, involving both guided and forbidden tasks. The proposed method uses
optimization-based control and tasks definition and execution achieved using
CBFs. DQ algebra allows a simple representation of the surgical scene with
time-varying constraints that reflect environment change. Task prioritization
ensures the possibility of autonomously switching the priority of the defined
tasks during execution. The strategies are evaluated through multiple valida-
tion tests performed using two different robotic platforms, as dVRK robot for
MIRS and Symani®Surgical System for microsurgery. The tests are achieved
using CoppeliaSim physics simulators of the considered robotic systems and
on real dVRK robot. The obtained results demonstrate the effectiveness of the
method, showing the correct execution of the proposed tests.

The goal for future works is to use the proposed method to enhance teleop-
eration mode by coupling it with haptic feedback to the surgeon. The frame-
work could be extended considering more complex tasks to execute, involving
force contact between the robot and the tissues, showing the benefits of mul-
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tiple tasks execution in a real surgical scenario. A preliminary extension is
explained in Section 6.6. The advantage of multiple tasks definition as CBFs
constraints could be a powerful method not only for a teleoperated robot but
also towards autonomous task execution in robotic surgery.

6.6 Future Works

Feedback on interactions between tools and tissues still remains a crucial as-
pect for efficacy and safety in MIRS. The use of excessive force involuntary
applied by the surgeon could create serious injuries to human tissues or dam-
age the robot’s tools. For this reason, the design of a robotic-assisted task that
also involves physical interaction between the robot and environment becomes
a necessary step to ensure safety and reactivity to the varying conditions of the
surgical workspace. The multiple task execution framework based on CBFs
could be adopted to create novel solutions for the creation of autonomous pro-
cedures in surgery. In this context, autonomous tissue scanning using da Vinci
surgical robot with hybrid vision-force control is being developed in collabora-
tion with University of Leeds, integrating different visual sensing technologies
like ultra-sound images. A crucial step in the development of this project is
represented by the formulation of an effective method for sensing the interac-
tion force between the robot tools and the patient tissues. As exposed in Chap-
ter 2, several works are available in the literature, most of all based on force
measurements with no changes on robot structure, e.g using visual information
or joint torques measurements. An accurate force estimation can be obtained
using a sensor device presented in [3], integrated into da Vinci®robot instru-
ments. This sensor is particularly suitable for this purpose since it does not
require the modification of the surgical instruments and it is fully adaptable
to different robot platforms. The proposed sensing device allows measuring
only the interaction force components that lie in the plane orthogonal to the
instrument’s shaft, as shown in Fig. 6.8.

Accordingly, integration for the measurement of force component along
insertion axis (ze in Fig. 6.8) is needed. The method presented in [75, 76],
already tested on da Vinci Robot MTM arm in [88, 100], could perform the
required force estimation. This method could introduce a useful approach
for sensor-less force estimation, only requiring joint positions and the applied
torques without using acceleration measures that could add noisy terms to the
estimated force signal. The method starts from the dynamic model of a nDoFs

https://www.stormlabuk.com/
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Figure 6.8: The dVRK robot PSM arm with force sensor [3].

manipulator:
M(q)q̈ +C(q, q̇)q̇ + g(q) = τ + τext, (6.26)

where M(q) is the inertia matrix, C(q, q̇) defines Coriolis and centrifugal
elements, g is the gravity term, τ is the control torque and τext describes the
external torque due to contact forces applied on the robot. In this case, the
contact point is assumed as coincident with the PSM end-effector and there is
negligible friction at contact, i.e. the force is directed along the normal to the
contact surface. In these assumptions, the external torque is computed as:

τext = JTc (q)Fc, (6.27)

where Fc ∈ R3 represents the contact force and Jc is the Jacobian matrix re-
lated the velocity of contact point and joint velocity q̇. The method is based
on robot actuator fault detection and isolation technique, that uses the general-
ized momentum of the robot p = M(q)q̇ to compute a vector called residual,
defined as:

r = KI

(
p−

∫ t

0
(τ +CT (q, q̇)q̇ − g(q) + r) ds

)
, (6.28)

where KI ≥ 0 is a diagonal gain matrix. The dynamic evolution of r defined
as ṙ = KI(τext − r), becomes for sufficiently large gain:

r ' τext. (6.29)

Thus, the external force could be estimated by:
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Figure 6.9: Estimated force along the insertion axis. The blue line is the force mea-
sured on the ATI sensor, and the red line represents the estimated component.

F̂c =
(
JTc (q)

)∗
r, (6.30)

where
(
JTc (q)

)∗ is the pseudo-inverse matrix of the transposed Jacobian.
Therefore, this approach provides a useful force estimation practice based on
the computation of a single residual vector, which requires only the robot
dynamic model. Hence, the correct estimation of the force contact on the
insertion axis is related to the dynamic parameters identification of the da
Vinci®robot. In this work, an approach similar to [55], presented in Chapter 2,
is considered. In particular, the friction contribution is:

τf = Fvq̇ + Fc sgn(q̇), (6.31)

where q̇ is the vector of joints velocities, Fv and Fc are diagonal matrices
representing the viscous and Coulomb friction constants. An alternatives to
Coulomb friction with Stribeck effect model Fc sgn(q̇) is also implemented,
using hyperbolic tangent model Fc tanh(q̇).

The force estimation method is evaluated through simple tests, in which the
PSM arm is controlled to autonomously interact with a phantom tissues. The
proposed method estimates the force on z-axis, comparing it with the force
measured using a commercial force-torque sensor ATI Mini 45 positioned on
the phantom. During the test, only the prismatic joint of PSM arm is consid-
ered and the robot moves vertically to reach several times the tissue. Figure 6.9
presents the estimated and the measured force trends, showing that the exposed
method allows a sufficiently accurate estimation with a mean absolute error of
0.2660± 0.0024 N.



Chapter 7

Conclusions

This thesis addressed the problem of creating reliable solutions to enhance the
quality of intervention in surgical robotic procedures. Modern teleoperated
robots notably improve surgeon abilities compared to traditional open surgery
and LS, but critical tasks mostly rely on surgeon’s ability. These robotic sys-
tems are directly controlled by the surgeon and basic improvements mainly
regard tremor filtering and motion scaling. For these reasons, more advanced
control algorithms and methods show great potential to be implemented on sur-
gical robotic platforms, enhancing teleoperation in a shared control paradigm
or creating autonomous tasks. Moreover, the perception phase could also be
reinforced using new computer vision techniques to obtain a more accurate
geometrical description of the surgical site.

After an introduction of the surgical robotics scenario and review of the
state-of-the-art methods given in Chapter 2, aiming to draw attention to the de-
scription of novel surgical robotic platforms, autonomous and shared control
algorithms, and vision assisted applications, contributions of the thesis were
presented. The first two scientific contributions concern assistive methods
based on haptic-guided shared control applications on specific surgical pro-
cedures. The first work is presented in Chapter 3, focusing on the dissection
and cutting task of precancerous growths, called polyps. In this case, vision
and control enhancements were aimed at redefining each step of a specific sur-
gical procedure to assist the surgeon with a functioning pipeline. The work
proposed a shared control method based on GVFs in which computer vision
algorithms are employed to detect the region of intervention. An overview
of the traditional dissection procedures was provided, the control architecture
design was explained in detail and experimental tests were reported to show
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the performance improvements compared to the non-robotic procedure. Chap-
ter 4 concerns another assistive method for suturing that represents the most
difficult task in surgery. Like the previous work, the design regards a haptic-
guided shared control application, focusing on the detection part proposing
a tracking method of suturing needle. The grasping pose was obtained by a
standard gradient descent optimization routine, that yielded neither joint limits
nor singularities during post-grasp suturing trajectory execution. Despite pos-
itive results that justify the development of those methods, some limitations
are still present. In particular, the use of basic computer vision concepts rep-
resents only a first step for a correct region of interest identification. More
advanced vision techniques, e. g. based on Machine Learning approach, could
allow the application of this method to the real surgical site. Moreover, the
assistance provided by GVFs could become customized to be suitable for a
different level of assistance; for example, a novice surgeon could prefer harder
guidance instead of a softer one that is more desirable for the expert surgeons.

The work presented in Chapter 5 introduced a method that can help the
surgeon in a generic sub-task that frequently occurs in all the surgical proce-
dures. Collision avoidance of instruments tools could prevent serious damages
and notably reduce the surgeon workload, which is relieved from continuously
paying attention to the tool distance to avoid clashing. The work presented
in this chapter adopted a marker-less surgical tool tracking based on EKF fil-
ter and the detection part was executed by a deep learning algorithm for in-
strument semantic segmentation, based on a fully CNN. Differently from the
other proposed strategies, this approach was validated through experiments
that involved novice and expert surgeons, showing good results in improving
performances. In all the presented works, the robotic system is controlled by
the surgeon while receiving haptic cues that help to better perform the task.
The human factor is a central aspect to assess the feasibility and repeatability
of the proposed methods.

Unlike the previous contributions, the achievements in Chapter 6 repre-
sented a generic framework to enhance teleoperation in multiple tasks, and
at the same time was a first step to go towards autonomous task execution in
robotic surgery. A series of basic actions composed a single surgical gesture,
executed simultaneously by the framework with different priorities. Nonethe-
less, all the considered sub-tasks were defined in joint or Cartesian space and
described accomplishments that did not involve any contact force exchanged
between the robot and the surrounding environment. A novel method for force
estimation is strictly needed to create more complex tasks to accomplish.
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