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Abstract

The sought goal of this thesis is to show that total energy shaping
is an effective and versatile tool to control underactuated mechanical
systems. The performance of several approaches, rooted in the port-
Hamiltonian formalism, are analyzed while tackling distinct control
problems: i) equilibrium stabilization; ii) gait generation; iii) gait ro-
bustification. Firstly, a constructive solution to deal with interconnec-
tion and damping assignment passivity-based control (IDA-PBC) for
underactuated two-degree-of-freedom mechanical systems is proposed.
This strategy does not involve the resolution of any partial differential
equation, since explicit solutions are given, while no singularities de-
pending on generalized momenta are introduced by the controller. The
methodology is applied to the stabilization of a translational oscillator
with a rotational actuator system, as well as, to the gait generation for
an underactuated compass-like biped robot (CBR). Then, the problem
of gait generation is addressed using dissipative forces in the controller.
In this sense, three distinct controllers are presented, namely simulta-
neous interconnection and damping assignment passivity-based control
with dissipative forces, energy pumping-and-damping passivity-based
control (EPD-PBC), and energy pumping-or-damping control. Finally,
EPD-PBC is used to increase the robustness of the gait exhibited by the
CBR over uncertainties on the initial conditions. The passivity of the
system is exploited, as well as, its hybrid nature (using the hybrid zero
dynamics method) to carry out the stability analysis. Besides, such an
approach is applied to new gaits that are generated using IDA-PBC.
Numerical case studies, comparisons, and critical discussions evaluate
the performance of the proposed approaches.
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Preface

This doctoral thesis is styled as a cumulative thesis. The main contents
are based on publications from peer-reviewed journals and conference
proceedings.

The constructive methodology for the IDA-PBC of underactuated
2-DoF mechanical systems with explicit solution of PDEs presented in
Chapter 4 and then exploited in Chapter 5, as well as, in Section 6.2,
has been accepted for publication in [1]. The alternative approach
shown in Section 6.2.1, has been presented in [2]. The use of dissipa-
tive forces to generate gaits has been proposed in [3]. In the this thesis,
the related methodologies are presented in Sections 6.3, 6.4, and 6.5,
respectively. The idea to use EPD-PBC with hybrid zero dynamics
to increase the robustness of the gait to uncertainties on initial con-
ditions, as well as, the related methodology has been accepted to be
published in [4]. The strategy and the numerical simulations validating
this approach are presented in Chapter 7.
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Chapter 1

Introduction

Complex systems require adequate control strategies which exploit,
rather than suppress, their inherent nonlinear nature. As pointed out
in [5], approaches that have been developed to control rigid arms de-
ployed in structured industrial environments limit robots to move far
too conservatively and to achieve only a small part of the performance
that they are kinematically capable of. An alternative approach is
represented by the study of underactuated robotics which leads to the
development of control systems that use the natural dynamics of robots
to achieve better performance in terms of speed, efficiency, or robust-
ness [5]. A mechanical system is underactuated when the number
of control inputs is less than the number of generalized coordinates
which have to be controlled to accomplish the desired task. Some mo-
tivations behind such a design approach are the need to save on the
cost of actuators, as well as, the need for better performance and au-
tonomy (especially in mobile robotics). Such objectives are reachable
by reducing the total number of actuators, which leads to a lightening
of the whole mechanical structure. Another common motivation be-
hind underactuation is the intrinsic difficulty (often impossibility) to
actuate a given joint due to the particular kinematic structure of the
robot.

Whatever motivation exists behind the underactuation, some state-
of-the-art control methodologies cannot be applied. An example is the
input-output linearization, which is instead broadly used for fully actu-

12



Introduction 13

ated robots. Exceptions occur when restrictive conditions on the iner-
tia matrix hold, hence limiting the range of applicability of the method-
ology, which leads to a partial feedback linearization approach [6].
Anyway, even in those cases for which partial feedback linearization
is applicable, this control policy does not fully exploit the nonlinear
nature of the system, implying a worsening in the performance exhib-
ited by the controlled system.

Great research effort has been put into developing control strate-
gies tailored for underactuated mechanical systems. Passivity-based
control (PBC) plays a key role in this quest. A mechanical system
is passive respect to input-output signals if the variation of its en-
ergy during a certain time interval is less than or equal to the energy
exchanged by the system with the external environment. Hence, con-
trol methodologies based on passivity are those which duly take into
account the nonlinear nature of systems, regarded as energy exchang-
ing devices. Given the desired equilibrium point, PBC passivizes the
system with a storage function that has a minimum exactly at that
point. This methodology proved to be useful for stabilizing simple
mechanical systems, shaping their potential energy only. Neverthe-
less, some applications, including underactuated mechanical systems,
require to shape also kinetic energy [7, Section 10.3.1]. Energy shaping
is a subclass of PBC which exploits the intrinsic physical and passive
properties of the systems by assigning a desired energy to the closed-
loop, resulting in a fundamental tool to control nonlinear systems [8].
As seen, some applications require to shape only the potential en-
ergy whereas others need to shape also the kinetic one. Motivated
by the need for a total energy shaping which extends the range of
applicability of PBC to a broader class of systems (e.g., underactu-
ated mechanical systems), interconnection and damping assignment
passivity-based control (IDA-PBC) has been proposed in [9]. IDA-
PBC is rooted in the port-Hamiltonian (pH) framework, a modeling
formalism which explicitly models nonlinear systems highlighting their
energy-conserving/dissipating properties. The pH framework allows to
describe the system in terms of Hamiltonian, interconnection and dis-
sipation structures, and input ports, resulting to be an elegant tool
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to describe passive systems. What makes the pH framework so use-
ful to cope with underactuation is the set of control techniques that
have been developed to exploit such formalism. The main class of
control strategies is represented by the IDA methodologies that are
those based on IDA-PBC. This latter control approach results from
the matching between the dynamics of the plant (potentially under-
actuated) and those of the desired system. Such matching consists in
the solution of a set of partial differential equations (PDEs) which are
the main stumbling block to a widespread diffusion of such kind of
control methodologies. IDA-PBC is well suited to cope with underac-
tuated systems due to the presence of a skew-symmetric matrix in the
matching equations, resulting from the inclusion of gyroscopic (work-
less) forces in the desired dynamics, that can be profitably designed to
reduce the number of PDEs to be solved. Despite this, research paths
are still pursuing a systematic procedure to avoid the solution of such
PDEs [10, 11]. This could have beneficial effects not only in the quest
for a control law able to stabilize underactuated mechanical systems
at sought equilibrium points but also for different control tasks. One
of such tasks is the gait generation, which is addressed when dealing
with the locomotion control of legged robots.

Gait generation is the creation, through a feedback control action,
of a walking pattern (usually periodic) for a legged robot. Biped robots
constitute a subclass of legged robots that are those with only two legs
and upright posture. In particular, this thesis addresses the gait gener-
ation for the compass-like biped robot, which belongs to the class of the
point-feet passive bipeds. Point-feet synthesizes some of the properties
encompassed by human feet where the former ones rotate around a sin-
gle axis (the tip of the leg) while the latter rotate around two axes (the
heel and the toe of each foot), although a freely rotating point of con-
tact is more difficult to control than the heel-strike or toe-roll phases of
human walking [12]. Point-feet bipeds are often designed with unactu-
ated ankles. If gait generation can be achieved when zero control torque
is applied at stance ankle, then it is likely that flat-footed walking can
be accomplished with arbitrary small torques [12]. Moreover, based on
previous work in planar robots [13], there is good reason to believe that
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a gait consisting of a full walking cycle (heel strike, flat foot, and toe
roll) can be realized stably. For these reasons, walking with an unac-
tuated point-feet presents an interesting case study for any locomotion
control design methodology. In this situation, underactuation arises
when no control torque is applied at the ankle’s joints, but it is not
the only possibility. Studies on the natural human gait show that the
primary energy source for the forward motion comes from ankles and
that an ankle-only actuation is more energetically efficient than a hip-
only one [14, 15] . In human walking, the ankle is the main source of
the energy required for the forward motion of the body [14], contribut-
ing more than the knee or hip [15]. Such studies, which show that zero
control torque at the hip joint faithfully resembles human locomotion
from an energetic point of view, have thus motivated control strategies
for underactuated bipeds with a passive hip joint [16]. Hence there are
two alternative approaches: those for which underactuation represent
the best test-bed to propose robust control strategies to achieve stable
walking, i.e., methodologies which consider unactuated ankle’s joints,
and, at the opposite end of the spectrum, those for which underactua-
tion is an opportunity to propose more human-like and efficient gaits,
i.e., approaches that consider an unactuated hip joint. In both cases,
underactuation is motivated by the necessity to exploit distinct prop-
erties endowed by the biped’s model during control design, to propose
robust and efficient walking. Since biped’s gait is underactuated, gait
generation has necessarily to cope with underactuation. Moreover, the
key features of biped locomotion are synthesized by passive dynamic
walking, which is exhibited by passive walkers, i.e., biped robots able
to walk down a shallow slope with no actuation, under the influence
of the gravitational field only [17]. Conservation of mechanical energy
is the physical principle which explains passive dynamic locomotion.
For this reason, studying passive locomotion from an energetic point
of view is a profitable way to enter the core mechanism which un-
derscores efficient and human-like locomotion. Because of the pivotal
role that conservation of energy plays in generating efficient walking, it
feels natural to shape the energy of the biped in such a way to modify
the gait. Energy shaping was proved to be an effective strategy to



Introduction 16

control passive walkers, albeit it has been poorly used. Passive gaits
suffer from weak stability properties since the associated limit cycles
(i.e., the solutions representing the gaits in the phase plane) usually
exhibit a restricted basin of attraction. Therefore, the advantage of
shaping the energy during continuous dynamics is twofold. First, the
passive gait’s basin of attraction can be enlarged, second, the gait can
be modified by changing the way the robot and the ground exchange
energy [16, 18, 19, 20].

This thesis shows the effectiveness of IDA methodologies, which
have been originally developed to stabilize systems at desired equi-
librium points, to tackle the gait generation of planar, passive biped
robots. The investigation about the effects of IDA methodologies,
which are strategies perfectly fitted to shape the energy of underac-
tuated systems, on the gait generation for passive walkers follows im-
mediately from the importance assumed by underactuation and energy
conservation in passive locomotion.

As the first contribution, this thesis shows a novel control method-
ology, firstly presented in [1], inspired by IDA-PBC, aimed at avoiding
the explicit solution of the PDEs arising during the matching process,
while not introducing any singularity in the controller. Since controller
design is simplified, this new procedure is applied to tackle both the
equilibrium stabilization of a translational oscillator with a rotational
actuator (TORA) system and the gait generation for a compass-like
biped robot (CBR), proving the versatility of IDA methodologies to
also cope with control problems differing by standard equilibrium sta-
bilization, thus extending the range of applications of IDA methodolo-
gies.

The second contribution is the application of the simultaneous in-
terconnection and damping assignment passivity-based control (SIDA-
PBC) with dissipative forces to accomplish gait generation, as origi-
nally shown in [3]. Unlike IDA-PBC, which firstly accomplishes energy
shaping and, successively, dissipates energy, SIDA-PBC accomplishes
energy shaping and damping injection simultaneously. As claimed
in [21], SIDA-PBC with dissipative forces represents a generalization of
IDA-PBC, meaning that it applies to a wider class of systems. SIDA-
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PBC uses dissipative forces, in contrast to IDA-PBC which uses gy-
roscopic ones. This difference might justify the fact that the former
is more suited to generate small gaits while IDA-PBC exhibits good
performance in generating both large and small ones, as will be shown
in the sequel of the thesis.

Another control strategy investigated in this thesis, which exploits
dissipative forces too, is the energy-pumping and damping passivity-
based control (EPD-PBC). Such methodology represents a valid alter-
native to SIDA-PBC, as outlined in [3], due to the similar performance
displayed and to the simpler control design because it does not require
solving any PDEs. Hence the third contribution is the application of
EPD-PBC to tackle gait generation.

Moreover, as firstly proposed in [4], in this thesis EPD-PBC is
adopted in conjunction with the Hybrid Zero Dynamics (HZD) ap-
proach. In this way, by explicitly taking into account the hybrid nature
of walking, the exponential stabilization to a reference energy value for
a planar biped robot is achieved. This is instrumental to enlarge the
basin of attraction of an existing gait, as firstly shown in [22]. The
target energy in the EPD-PBC can be related to the passive gait or
another one if an inner energy shaping control loop is applied. Non-
passive gaits are created through energy shaping, which is motivated
by the necessity to change the way the robot and the ground exchange
energy [23]. Compared with the approach exploited in [22], which is
based on Poincaré maps, the methodology used in this thesis, based
on invariant set theory, leads to less conservative results [24] in deter-
mining the stability of the controlled system.

The outline of this thesis is organized as follows.
In Chapter 2, a summary overview of the most common approaches

deployed to control simple biped robot models is given. Subsequently,
a literature review about energy shaping approaches applied to passive
locomotion, focused on gait generation, is carried out. Then, a specific
energy shaping methodology, namely IDA-PBC, is revised, with partic-
ular emphasis on the strategies which have been proposed to avoid the
solution of PDEs. Finally, some state-of-the-art approaches to stabilize
gaits taking into account the hybrid nature of walking, each one rooted



Introduction 18

in the HZD approach, are summarized. Chapter 3 is devoted to the
pH modeling of underactuated mechanical systems firstly. The TORA
system is described, which is the test-bed employed in this thesis to
show the effectiveness of the proposed stabilization approach. Then,
hybrid mechanical systems are presented with particular emphasis to
planar biped robots able to walk exhibiting a periodic gait without ac-
tuation. Finally, the HZD concept is introduced and the CBR model,
which is the test-bed deployed to show the effectiveness of gait genera-
tion methodologies, as well as, of the approach aimed at enlarging the
basin of attraction of the passive gait, is presented. Chapter 4 presents
a variant of standard IDA-PBC aimed at shaping the total energy of
a given 2-DoF underactuated mechanical system without solving any
PDE explicitly. In Chapter 5 the IDA-PBC methodology, previously
presented in Chapter 4, is applied to tackle the stabilization task of
the TORA system. Chapter 6 proposes several approaches to face the
gait generation problem of the CBR, namely IDA-PBC with explicit
solutions of PDEs, SIDA-PBC with dissipative forces, EPD-PBC, and
EPOD-PBC. Performance comparison among methodologies exploited
is done, pointing out the advantages of total energy shaping with re-
spect to kinetic energy shaping. Chapter 7 presents an alternative use
of EPD-PBC, aimed at enlarging the basin of attraction of an exist-
ing gait by duly taking into account the hybrid nature of the CBR
and using HZD. In Chapter 8, conclusions and ongoing projects are
outlined.

Figure 1.1 may help the reader to go through this thesis, outlining
the logic connections between the chapters and the appendices.
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Figure 1.1: Logic scheme of this doctoral thesis. Numbers and letters
refer respectively to chapters (red) and appendices (green).



Chapter 2

Literature Overview

2.1 Bipedal Locomotion Control Approaches

This section is inspired on the survey proposed in [12], which is warmly
recommended to deepen the arguments that are about to be addressed
in the following.

When studying locomotion control strategies of biped robots, the
most popular concept used in literature is the zero moment point
(ZMP), i.e., the contact point between the ground and the foot at
which the reaction forces produce no horizontal moment. ZMP-based
control approaches plan the motion of the robot’s center of mass (CoM)
to keep the ZMP within the convex hull of the stance foot. As conse-
quence, the foot remains flat on the ground while not rotating, thus
leading the robot to walk without falling [25].

It is common to reduce the complexity of control design by referring
to a lower-dimensional model. If the robot is approximated as a point
mass, legs are assumed to be massless and telescoping and, addition-
ally, if the height of the CoM is assumed to not change throughout the
whole gait, then the biped can be approximated by a linear inverted
pendulum model (LIPM) [26], which is the most simple low-dimensional
model for a biped robot. Besides, such kind of model founds some mo-
tivations in the study of human posture and balance [27]. To achieve
walking with such a simplified model, the ZMP can be expressed in

20



Literature Overview 21

a simplified way, as the dynamics of the CoM via a linear ordinary
differential equation (ODE) [28, 29]. ZMP has been extensively inves-
tigated to tackle the gait generation task leading to several solutions,
some of the most relevant are [30, 31, 32]. Moreover, it was first demon-
strated in practice on the WL10-RD biped in [33]. Since gait design
via ZMP methods does not take care of the hybrid nature of walking,
some limitations arise. For instance, the swing foot trajectory must be
planned in such a way as to hit the ground with low velocity, which
can be hard to achieve. Moreover, it is shown in [34] that fulfilling
ZMP conditions does not guarantee the asymptotic stability of a pe-
riodic walking motion. More complex models have been successively
considered to overcome such limitations. An additional point mass
has been added at the location of the swing foot in [35] to explore a
gravity-compensated LIPM, to achieve better modeling accuracy.

The inverted pendulum with flywheel (IPF) is used to achieve pos-
ture control and analysis of push recovery in [36], and to mitigate the
effects of modeling error on gait generation in [37]. The concept of the
capture point, i.e., a point on the ground on which a biped can stop,
keeping an upright posture without toppling [38], has been proposed
using IPF. Then such a concept has been used to design a stabilizing
control law for a biped in [39] and for achieving robust walking com-
bined with learning (due to the large errors present in the set of all
capture points) in [40].

A simplified model which was developed based on observations on
hopping and running of several terrestrial animals is the spring-loaded
inverted pendulum (SLIP) model [41], which well approximates their
body CoM motion during steady-state running gaits [42]. Moreover,
the SLIP model behavior is endowed by effectively running robots such
as the Planar Hopper [43], ARL Monopod II [44], and CMU Bowleg
Hopper [45]. In [41, 44] the original control methodologies of such kind
of robots are presented, aimed at regulating forward propulsion of the
robot at the desired speed by placing the toe at the desired position
with respect to the CoM during flight phases, regulating the vertical
hopping height of the body by adjusting the length of the leg at the
bottom of the stance phase through a fixed amount of thrust, and
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keeping the body at the desired posture exploiting hip torque during
contact phases.

LIPM, IPF, and SLIP approximate complex bipeds with simpli-
fied models. An alternative modeling approach is to design robots
with dynamics that approximately realize a simplified model, where
a specific mechanical design helps to achieve dynamic stability, also
without feedback control in some peculiar conditions. Analysis and
synthesis methods developed on such simple models can be deployed
in more complex bipeds. The simpler mechanical design facilitates
a more deepen mathematical modeling, thus allowing to take care of
impact dynamics during control design and, consequently, to take into
account the full hybrid model which is generally neglected from the de-
sign process of control policies used to stabilize LIPM, as well as, IPF
and SLIP models. After some preliminary studies [46], which pointed
out a tight connection between the swing phase of human walking and
the motion of a double inverted pendulum, enlightening the passive
nature of human walking, planar, passive bipedal walkers, i.e., biped
robots without any actuation which could walk stably down shallow
slopes were built. The rise of such pendulum-like bipeds, whose presen-
tation coincided with the birth of the concept named passive dynamic
walking, began with the compass-like biped robot (CBR), i.e., a simple
inverted-pendulum model, firstly proposed in its original version with-
out knees [17] and then adding them [47]. The interest in studying
passive dynamic walking is twofold. At first, passive walking exhibits
similarities with human gait features, serving as a testbed to investi-
gate human locomotion [48]. Secondly, this kind of motion is energeti-
cally efficient compared to the other state-of-the-art biped locomotion
control strategies based on walking primitives preplanning and on the
zero moment point stability criterion [49]. Passive dynamic walking
served as the leading principle in the design of several robots, all of
them sharing the “human-looking” walking and the efficiency, rising
as unrivaled effective devices in periodic walking and running. For this
class of walkers, the main drawback is the lack of flexibility in achiev-
ing tasks other than walking at a fixed speed, making them ineffective
in realizing more articulated tasks, such as the ones requiring to climb
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Figure 2.1: Complexity evolution in approximate biped robot models
as proposed in [12]. From left to right: the Linear Inverted Pendulum
Model (LIPM) which exhibits the whole mass of the robot lumped
at a point moving at a fixed height, with massless legs; the Inverted
Pendulum with Flywheel (IPF) which accounts for the internal angu-
lar momentum of the robot by adding a flywheel and which relaxes
the assumption on fixed height; the Spring-Loaded Inverted Pendulum
(SLIP) which incorporates a spring to model legs as massless pogo
sticks; and the Compass-Like Biped Robot (CBR) which represents
the biped as a double inverted pendulum with lumped masses on the
stance and swing legs, as well as, on the hip.

stairs or to pause and turn. One example of biped robot realized with
this design philosophy at the core is the one proposed in [50], where
gait is generated by injecting small amounts of energy into passive-type
bipeds, and where a mix between mechanical design and learning algo-
rithms helps to find the efficient control policy. A passive dynamic for
multiple degrees of freedom underactuated biped is generated in [51]
by combining a passive controller and a proportional-derivative one.

A more deepened presentation about a sub-class of PBC strategies
developed for bipeds exhibiting passive dynamic walking, CBR in par-
ticular, is proposed in the next section. The complexity-evolution of
low-dimensional biped models is synthetically sketched in Figure 2.1.
Another broad overview about how generic legged robots are modeled
and how they are controlled is given in [52].
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2.2 Energy Shaping Applied to Passive
Dynamic Locomotion for Gait Gen-
eration

Passive dynamic walking is the stable gait performed by an underactu-
ated biped robot descending a moderate slope under the effect of the
gravitational field only. The biped robot’s dynamic parameters must
be suitably chosen to realize such a stable gait. Firstly investigated
in [17], this phenomenon emerges when an inelastic impact with the
ground dissipates the increment of kinetic energy at the end of every
single step, resetting the potential energy to its initial value. If both
the robot and the environment meet particular geometrical and iner-
tial conditions, the mechanical (total) energy of the biped is constant
during each step, and thus the whole process evolves indefinitely. A
limit-cycle represents such behavior in the phase plane of the robot
state variables.

Since such a passive gait is naturally exhibited by the unactuated
biped robot when the initial conditions are precisely on the associated
limit cycle, adding a control action is useful for two reasons. One is
the possibility to enlarge the basin of attraction of the passive (uncon-
trolled) gait. The other is the possibility to generate additional gaits
to the original one exhibited without actuation. Therefore, studying
passive dynamic walking can be the starting point to develop energy-
saving control strategies.

This thesis focuses on a specific passive walker, the CBR which,
despite its simple kinematic structure, exhibits a very complicated
dynamic behavior due to the hybrid nature of the system [53]. An
effective, but still poorly used, strategy to control the CBR is the
energy shaping [54] which represents a dominant class of methodolo-
gies, belonging to the more general realm of passivity-based control
approaches, able to exploit the intrinsic passive nature of such a type
of systems. Most of the works proposed in the literature derive the
control laws starting from a Lagrangian modeling framework. For ex-
ample, a potential energy shaping finalized to make the biped’s gait
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slope invariant is applied in [18] using a particular technique called
controlled symmetries (CS). A potential energy shaping is instead em-
ployed in [20] to regulate the biped’s forward walking speed. The for-
mer cited works [18, 20] consider a fully actuated biped robot model.
However, studies on the natural human gait show that the primary
energy source for the forward motion comes from ankles and that an
ankle-only actuation is more energetically efficient than a hip-only one
and a fully actuated system. These biomechanical considerations are
explained in [16], motivating a kinetic energy shaping control for an
underactuated CBR which creates new walking gaits based on the con-
trolled Lagrangian (CL) methodology [55, 56].

Starting from the port-Hamiltonian (pH) modeling framework, a
similar result is achieved in [49] where the proposed control strategy
is based on the interconnection and damping assignment passivity-
based control (IDA-PBC) [9, 57], that is capable to generate robust
gaits characterized by small step lengths and slow forward speed by
shaping only kinetic energy. In particular, the methodology followed
in [49], based on [58], requires that the open-loop inertia matrix does
not depend on actuated generalized coordinates, forcing to perform a
preliminary change of coordinates to get a suitable dynamic model.
Other energy-efficient control approaches which exploit the pH frame-
work are proposed in [59] for several walking robots.

Besides, a total energy shaping approach enlarges the basin of at-
traction of the limit cycle (making the gait more robust over uncertain-
ties on the initial conditions), increases the rate of convergence, and is
more effective in generating new gaits compared to those methodolo-
gies which shape only potential or kinetic energy.

2.3 IDA-PBC Approaches to Avoid the
Solution of PDEs

As stated in Section 2.2, IDA-PBC can be profitably used to force new
gaits during passive dynamic walking. The main drawback behind
such control methodology is the solution of a set of PDEs, which is
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instrumental to design the control law. This section presents some of
the approaches proposed in the literature to avoid the solution of such
PDEs.

IDA-PBC [9] is a nonlinear control methodology that is rooted in
the pH framework of nonlinear systems. Differently from other nonlin-
ear control strategies, IDA-PBC does not cancel nonlinear dynamics
out but, conversely, it takes advantage of the nonlinear nature of the
plant. IDA-PBC stabilizes a given plant at the desired equilibrium
point by matching the original dynamics with desired ones. The de-
sired total energy in the closed-loop must exhibit a minimum in such
an equilibrium. The matching involves the solution of a set of PDEs,
called matching equations, which represent the main bottleneck of the
control design. These PDEs, which include plant dynamics and the de-
sired closed-loop total energy, are parameterized by three matrices that
are related to the interconnection between the subsystems, the damp-
ing, and the kernel of the input matrix, respectively. The role played
by these matrices has several interpretations, as explained in [60].
Throughout the years, several strategies have addressed constructive
procedures avoiding the solution of the PDEs [61], and they are distin-
guished by how the matching process is tackled. Referring to the tax-
onomy introduced in [60], the described methodology can be grouped
into three main classes: i) non-parameterized IDA-PBC; ii) algebraic
IDA-PBC; iii) parameterized IDA-PBC. The non-parameterized IDA-
PBC represents the standard formulation proposed in [9]. In this case,
the desired interconnection and the damping matrices are fixed, as well
as the input matrix. The procedure leads to a set of PDEs defining the
family of the proper desired total energy functions. A solution, having
a minimum in the desired equilibrium, is selected among such a family.
A constructive methodology based on a dynamic extension is provided
in [62], exploiting the notion of the algebraic solution of the matching
equations. The authors proposed to asymptotically stabilize an equilib-
rium point without involving the solution of any PDE by constructing
an auxiliary energy function in an extended state-space. As firstly pro-
posed in [54], the algebraic IDA-PBC fixes the desired energy function
for the closed-loop. This choice transforms the matching equations
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into algebraic ones with the interconnection matrix, the damping ma-
trix, and the input mapping port as unknowns. This approach, which
is inherently constructive and straightforward, is based on the exact
knowledge of the desired energy function that, in turn, requires proper
physical considerations that are not always easy to derive. The param-
eterized IDA-PBC fixes the structure (i.e., the family) of the desired
energy function. This is convenient in those physical systems which
always exhibit the same structure of the total energy. An example
is given by the mechanical systems whose desired energy function is
the sum of a potential energy term, depending only on the generalized
positions, and the kinetic energy, which is quadratic in the generalized
momenta. According to [63], relatively to the class of underactuated
two-degree-of-freedom (2-DoF) mechanical systems with underactua-
tion degree one, such a parameterization yields to the decomposition
of the original matching equations in two separate PDEs. The former
is referred to as kinetic energy matching equation (KE-ME), and it de-
pends on the generalized momenta; the latter is referred to as potential
energy matching equation (PE-ME). Besides, such a parameterization
introduces some degrees of freedom which are helpful for the solution
of the PDEs. Several constructive solutions were presented for this
methodology. For instance, the results presented in [58] show that if
the original system’s inertia matrix, as well as the forces induced by the
potential energy, does not depend on the unactuated coordinates, and
given a particular parameterization of the desired inertia matrix, then
the KE-ME can be solved as an algebraic equation. Besides, the PE-
ME admits a general solution, which is a given integral. Conversely,
a solution that can be applied only to those systems having an inertia
matrix depending exclusively on the unactuated coordinates, and en-
dowing a constant sub-block matrix, is proposed in [11]. However, in
this last case, the pH structure of a mechanical system in the closed-
loop is not preserved. The recent methodology from [64] proposes a
constructive solution for underactuated 2-DoF mechanical systems by
relaxing some of the constraints imposed by the previous works. In
particular, the plant’s inertia matrix can depend on both the actuated
and the unactuated variables. Such a procedure avoids the explicit
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solution of the matching equations by parameterizing the desired iner-
tia matrix. However, it introduces a singularity in the interconnection
matrix depending on generalized momenta.

2.4 Locomotion Control Strategies Based
on HZD

Energy shaping methodologies presented in Section 2.2, such as CS,
CL, and IDA-PBC, have been originally developed to stabilize me-
chanical systems in absence of impacts. For such kind of a task, it is
usually sufficient to achieve asymptotic convergence to the desired en-
ergy level to realize the sought goal. IDA-PBC guarantees that target
dynamics are asymptotically stabilized at an equilibrium point corre-
sponding to the minimum of the target Hamiltonian, for instance. As
outlined in [12, 22], methods that stabilize a biped robot to a specific
gait are those which construct a zero dynamics manifold. As clearly
explained in [12, 65], reset maps that characterize hybrid systems push
away solutions that do not lie in the zero dynamics manifold. Hence,
the convergence of the continuous dynamics to the manifold must be
sufficiently rapid to counteract such a repulsive behavior of the re-
set map. Energy shaping approaches presented in Section 2.2 neither
construct a zero dynamics manifold nor guarantee exponential conver-
gence of continuous dynamics to it. Hence they can stabilize the biped
robot to neither a specific gait nor a target energy level (due to the
presence of impacts), while they effectively generate new gaits.

The approaches that duly take into account the hybrid nature of
the system should address closed-loop exponential stability [12]. Some
of them ensure exponential convergence by exploiting the notion of hy-
brid zero dynamics (HZD) [66, 67, 68]. While these preliminary works
were based on an input-output linearization, an approach based on a
Lyapunov analysis was proposed in [65], where rapidly exponentially
stabilizing control Lyapunov functions (RES-CLF) were used to make
the output dynamics converge exponentially fast to the HZD manifold
with a rate of convergence which can be modified by gain adjustments.
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Later, the same framework was extended in [22] to achieve energy-
shaping to increase the robustness of the passive gait of the CBR with
respect to perturbations in initial conditions. Based on the HZD, but
not relying on RES-CLF, the work in [69] proposed a passivity-based
approach to keep the natural dynamics of the system and enhance the
performance in terms of robustness and control effort minimization.



Chapter 3

Modelling

The underactuated mechanical systems addressed in this thesis have
n = 2 degrees of freedom, m = 1 control inputs, no natural dissipation,
constant input matrix, and continuous bounded elements of the inertia
matrix. Such assumptions are reasonable and cover a very broad class
of 2-DoF mechanical systems [70].

For the sake of generality, the sections of this chapter have been
presented for n-DoF mechanical systems, apart from Section 3.1.1 and
Section 3.2.4 which introduce the models of the test-bed used to eval-
uate the performance of the proposed control approaches.

3.1 Underactuated Mechanical Systems in
the pH Framework

Consider an underactuated mechanical system with n degrees of free-
dom and m = n − 1 control inputs, let q ∈ Rn and p ∈ Rn be the
vector of generalized coordinates and momenta, respectively.

The pH model of such system is[
q̇
ṗ

]
=

[
0n In
−In 0n

] [∂H(q,p)
∂q

∂H(q,p)
∂p

]
+

[
0n×m
Gp(q)

]
u(q, p), (3.1)

with In ∈ Rn×n and 0n ∈ Rn×n the identity matrix and the zero matrix

30
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of proper dimensions, respectively, 0n×m ∈ Rn×m the zero matrix of
proper dimension, Gp(q) ∈ Rn×m is the full rank matrix mapping the
input, and u(q, p) ∈ Rm the control input.

The scalar function H(q, p) ∈ R is the Hamiltonian

H(q, p) =
1

2
pTM−1(q)p+ V (q), (3.2)

representing the total energy (kinetic plus potential) with M(q) =
M(q)T > 0 ∈ Rn×n the symmetric and positive definite inertia matrix,
V (q) ∈ R the potential energy.

Defined

J =

[
On In
−In On

]
(3.3)

such that J = −JT ∈ R2n×2n, the skew-symmetric interconnection
matrix mapping the principle of conservation of energy, the pH system
(3.1) can be synthetically represented as

ẋ = J∇xH(x) +G(x)u(x) (3.4)

where x =
[
qT pT

]T
is the state vector,∇xH(x) =

[
∇qH(x) ∇pH(x)

]T
=[

∂H(x)/∂q ∂H(x)/∂p
]T

is the Hamiltonian gradient vector, andG(x) =[
0m×n GT

p (q)
]T

is the input port.
The rationale behind the use of formulation (3.4) is its easiness to

be rewritten in the zero dynamics formulation, which is instrumental to
developing HZD-based methodologies to control a planar biped robot,
as will be shown in Section 3.2.3.

3.1.1 The TORA System

The TORA is an underactuated 2-DoF mechanical system firstly stud-
ied in [71] and commonly employed in the literature as a benchmark for
several nonlinear control systems designs addressing underactuation.

In the literature, the model of the TORA system through the pH
formalism and the use of the standard IDA-PBC approach is proposed
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in [72], where a constant closed-loop mass matrix reduces the com-
plexity of the matching equations related to the kinetic energy. A
dynamic extension is proposed in [73] to asymptotically stabilize the
system with only position measurements. The procedure to address
this goal is to shape the potential energy only, equating the open and
the closed-loop inertia matrices, canceling the assigned interconnection
matrix to get rid of the kinetic energy PDEs, and then the resulting
controller is independent of the velocity measurements because they
are not present in the potential energy. Besides, in the literature,
the TORA system is used as an example to test different feedback-
stabilizing controllers [74]. Several controllers based on cascade (lin-
ear cascade control, integrator backstepping) and passivity (feedback
passivation, passivation without cancellation) paradigms can be used
to asymptotically stabilize the system. The former class leads to al-
gorithms requiring full state feedback linearization and nonlinearities
cancellation, while the latter class, for input-output passive systems
with relative degree one and weakly minimum-phase, leads to con-
trollers with a reduced set of measurements and no cancellations. A
Lagrangian-based change of coordinates along with a partial feedback
linearization to reshape the system as a nonlinear cascade system in a
strict feedback form is addressed in [75]. The global asymptotic sta-
bility is then achieved via a backstepping procedure. An experimental
output regulation for the TORA system is performed in [76], while a
piecewise multi-linear model is considered in [77]. Finally, fuzzy-based
controls are proposed in [78, 79].

The TORA consists of a translational oscillating cart with mass
m2 > 0 that is controlled via a rotational eccentric mass, here schema-
tized by a pendulum with mass m1 > 0, radius r > 0, inertia I = m1r

2,
and a rigid link to the cart of length l > 0. The (actuated) variable q1(t)
denotes the angle of the mass m1 with respect to the vertical, while the
displacement of the cart with mass m2 is denoted by the (unactuated)
variable q2(t). The relative generalized momenta are identified by p1

and p2, respectively. The cart is forced to oscillate in the horizontal
plane by a spring with elastic coefficient k > 0. The actuated eccentric
mass damps the horizontal oscillations of the platform. The TORA is
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m2

q2(t)

k

q1(t) l
m1

Figure 3.1: Scheme of a translational oscillator with a rotational actu-
ator (TORA) system.

illustrated in Figure 3.1.
The pH model of the TORA system is given by (3.1) with the

elements of M(q) given below

b11 = m1l
2 + I, b12(q) = m1l cos(q1), b22 = m1 +m2. (3.5)

The Hamiltonian function H(q) for the TORA is (3.2), with

V (q) =
1

2
kq2

2 +m1lg(1− cos (q1)). (3.6)

3.2 Hybrid Mechanical Systems

The continuous pH system (3.4) can be more generally rewritten as

ẋ = f(x) + g(x)u(x), (3.7)

with
f(x) = J(x)∇H(x) , g(x) = G(x). (3.8)
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If the system undergoes impacts, its dynamics can be exhaustively
described by

Σ =

{
ẋ = f(x) + g(x)u(x) x ∈ X\S
x+ = ∆(x−) x− ∈ S

(3.9)

which represents a hybrid mechanical system, where x ∈ X is the
state, x− and x+ indicate the states just before and just after the
impact event, respectively, X ⊆ R2n is the admissibility domain of
continuous dynamics with cardinality 2n, f(x) ∈ X is the C1 vector
field describing continuous dynamics, g(x) ∈ X is the C1 vector field
mapping the control input u(x) in the continuous dynamics, S is the
switching surface, and ∆(x−) ∈ X is the C1 reset map.

J(x) in (3.8) has been expressed in a general form intentionally,
without assuming any particular structure for it. With such a choice,
it can represent the interconnection matrix of both uncontrolled (3.3)
and controlled (A.4) mechanical systems, as long as the latter ones
preserve the principle of conservation of energy characterizing uncon-
trolled systems. This can be achieved using an energy shaping control
action, carried out by IDA-PBC, for instance. Such a general structure
enables the application of EPD-PBC to enlarge the basin of attraction
of a passive gait, as well as, of a gait created via energy shaping, com-
bining EPD-PBC with IDA-PBC as will be shown in Section 7.4.2,
for instance. Albeit (A.4) is the interconnection matrix of a 2-DoF
controlled mechanical system, the above considerations have general
validity. Hence they hold for controlled mechanical systems of any
dimension.

3.2.1 Planar Biped Robots

Biped robots are hybrid, mechanical systems which can be profitably
described using (3.9). Their dynamics can be usefully partitioned in
swing phases and impact events.
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Swing Phase

As outlined in [12, Section 3.2], the nature of the foot-ground inter-
face determines the number of independently actuated joints and, in
turn, whether the dynamic model of the biped robot is fully actuated
or underactuated. If the biped has all the joints independently actu-
ated, including the ankle, and moves using flat feet, hence its model
is fully actuated whereas feet which are not flat on the ground, i.e.,
feet which rotate, necessarily lead to underactuation [12, Section 3.3].
Biped robots with rotating point feet, the CBR for instance, belong to
the class of underactuated mechanical systems [12, Section 3.4]. Dur-
ing the swing phase, the stance leg is continuously in contact with the
ground, behaving like a pivot. Zero control torque is applied at the
stance ankle. The other one, the swing leg, moves freely in the air.
Therefore, the interaction between the stance foot and the ground is
uncontrolled, yielding to one degree of underactuation in the related
model. No double-support phase is admitted, i.e., only one leg at a
time is in contact with the ground and, when left and right legs ex-
change their roles at the impact, the double support phase is only
instantaneous.

Continuous dynamics are usually modeled through Lagrangian for-
malism. Nevertheless, in this thesis, swing dynamics are modeled
through the pH formalism, as in (3.4). This choice is motivated by the
relationship connecting conservation of mechanical energy and dynam-
ics, especially in passive dynamic locomotion, which has given room to
plenty of energy shaping control methodologies well suited for under-
actuated mechanical systems.

The following hypotheses about the robot model, during swing
phase, are assumed throughout this thesis:

RH.1 the robot constitutes a single open kinematic chain made by n
rigid links, connected by n − 1 rigid and frictionless revolute
joints;

RH.2 the robot is planar, i.e., its motion is constrained to the sagittal
plane only;
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RH.3 the robot is biped with symmetric legs which are connected at
a common point which is the hip, and are terminated in points
(no flat foot assumed);

RH.4 the torque applied at stance foot is zero, thus the robot is under-
actuated with one degree of underactuation.

Impact Event

Let ysw(q) ∈ R be a scalar function mapping the vertical distance be-
tween the tip of the swing leg and the walking surface. Swing phase
continues as long as ysw(q) > 0, meaning that dynamics (3.7) is fol-
lowed until swing leg does not land. When ysw(q) = 0 and ẏsw(q) < 0,
an impact between the swing leg and the ground occurs. If the impact
is assumed to be rigid, i.e., a perfectly inelastic contact occurs, with-
out nor slipping or rebound between the hitting foot and the ground,
then the effect of the impact event on the state of the system can
be reasonably approximated as a discontinuous variation in general-
ized velocities, which undergo a jump. On the other hand, there is no
effect on generalized coordinates which do not change (apart from a
relabelling procedure due to the left-right symmetry of the gait).

Therefore, if the following hypothesis on an impact event hold:

IH.1 an impact between the swing leg and the ground is instantaneous,
i.e., double support phase is instantaneous;

IH.2 an impact does not give rise to neither slipping nor rebounds of
the swing leg;

IH.3 an impact is regarded as an impulsive force;

IH.4 an instantaneous change in generalized velocities arises at the
impact while the configuration variables remains unchanged.

Then, the dynamics of the biped robot, during an impact event, are
described by

(q+, q̇+) = ∆(q−, q̇−) (3.10)
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which relates coordinates and conjugated velocities just before the im-
pact, (q−, q̇−), with those just after it, (q+, q̇+), on the basis of the law
of conservation of angular momentum. Last equation leads to

(x+, ẋ+) = ∆(x−, ẋ−). (3.11)

since a discontinuous change in generalized velocities implies a propor-
tional variation in generalized momenta, due to the constancy of the
inertia matrix at the impact.

Subsequently, it is possible to define the switching surface as

S = {x ∈ X|ysw(x) = 0, ẏ(x)sw < 0}. (3.12)

3.2.2 Periodic Walking for Passive Bipeds

In many practical applications, the biped is required to walk with a
periodic gait, during running for instance. Moreover, a steady-state
stable, periodic walking is exhibited by passive bipeds without any
control action, under the effects of gravity only. Such kind of walking is
known as passive-dynamic walking [17]. Such passive periodic motion,
that, for sake of brevity, will be referred to as passive gait in this
thesis, arises when some geometric, as well as, inertial conditions are
met. Besides, initial conditions must fall inside the basin of attraction
of the passive limit cycle, which is the representation of natural gait
in the robot’s state space [53]. When dealing with periodic walking,
a step is defined as two consecutive foot-ground impacts [53, 16, 49].
Then, two parameters characterize the gaits of a passive biped: the
space covered on the slope by each step, that is referred to as step
length S, and its duration, i.e., the time between two consecutive foot-
ground impacts, which is referred to as step period T . For this specific
class of walkers, the control problem reduces to two alternatives:

1) make the robot walking with a periodic gait that differs from the
natural one;

2) enlarge the basin of attraction of the limit cycle, i.e., make the
robot walking with a periodic gait that has the same features (in
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terms of step length and step period, for instance) as the passive
one but which is more robust concerning uncertainties over initial
conditions.

The first problem is addressed by two different tasks, namely gait gen-
eration and gait stabilization (usually referred to as orbital stabiliza-
tion). If there is no preliminary assumption on the new gaits, the
control problem can be recast as gait generation. Gait generation
leads to stable periodic gaits, unexhibited by the uncontrolled biped,
by changing the energy of the passive walker, i.e., by changing the way
the robot and the ground interact. Methods currently existing for gait
generation do not have an intrinsic concept of stabilization to a spe-
cific gait through gain adjustment [49, 18, 20, 16], hence their design
does not rely on the whole hybrid model presented in (3.9) but only
on the continuous part. Conversely, if the new gait has some sought
features, such as desired S, T , and H, for instance, the gait design
has to explicitly deal with impacts occurring at swing-foot landing.
In such situations, the control problem is recast as gait stabilization.
Gait stabilization assumes the desired orbit that is associated with a
specific gait, with target characteristics, usually different from those of
the natural gait.

The second problem is addressed by gait robustification, which re-
quires stabilizing the passive orbit while making it more robust com-
pared to uncertainties on initial conditions. This is equivalent to en-
large the basin of attraction of the related limit-cycle which, for passive
bipeds, is narrow. In both cases, the sought periodic orbit, to which
stabilize the system at, has to be defined.

Given a finite time T ∈ R > 0 such that x(t) = x(t + T ) is a
periodic solution of the swing dynamics in (3.7), a periodic orbit is a
set O ⊂ X such that

O = {x ∈ X|x(t) = x(t+ T )}. (3.13)

When dealing with hybrid systems with impulsive effects, there is an
additional difficulty represented by the presence of the impact map. In
other words, the gait has to be periodic even if the swing leg hits the
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ground. Gait stabilization and gait robustification are the processes
of designing a control strategy that renders a given periodic orbit O
(a new one or the passive one) stable during both swing phase and
impacts.

In this thesis, gait generation and gait robustification will be faced,
while the gait stabilization is left as future work.

3.2.3 The Hybrid Zero Dynamics Concept

Although gait generation does not explicitly take into account the hy-
brid nature of walking during control synthesis, stabilization either to
a specific periodic orbit or to a target energy level does. To simplify
the solution of the task, a common approach is to tackle it in a lower-
dimensional space which is invariant under both the vector field f(x)
and the reset map ∆(x). Such low-dimensional manifold is usually
taken as a submanifold, called Z, of the domain of admissibility X.
Defined TxZ as the tangent space of the submanifold Z at the point
x, Z is

1) forward invariant if f(x) ∈ TxZ ∀ x ∈ Z;

2) impact invariant if ∆(x) ∈ Z ∀ x ∈ S ∩ Z;

3) hybrid invariant if it is both forward invariant and impact in-
variant.

Hybrid invariance ensures that a sought periodic motion preserves its
stability properties even in presence of impulsive forces exerted when
the swing leg hits the walking surface. In other words, the stabilization
of a periodic orbit of a hybrid mechanical system reduces to find a
control strategy which creates a hybrid invariant manifold Z ⊂ X
containing the desired orbitO among its solutions, and then to stabilize
such orbit. To find a suitable submanifold Z and the related dynamics
which are invariant under continuous dynamics only, it is possible to
exploit the notion of maximal internal dynamics which are compatible
with the output being identically zero, also known as zero dynamics,
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firstly introduced in [80]. The creation of a zero dynamics submanifold
usually depends on the imposition of a set of virtual constraints on the
output variables [12].

Continuous system (3.7) can be rewritten in a formulation that is
compatible with zero dynamics. There are several ways to accomplish
such a task, each one depending on the particular choice of the output
variables [22, 65]. In this thesis, a transformation similar to the one
proposed in [22] is exploited. The sought zero-dynamics formulation
of (3.7) is {

ẋ = f(x) + g(x)u(x, e) (x, e) ∈ X\S,
ė = r(x) + w(x)u(x, e) (x, e) ∈ X\S.

(3.14)

In this context, e is referred to as the output variable. In [22] e depends
on the energy of (3.7) as it does in this thesis, as will be clearly shown
in Section 7. On the other hand, x variables are the zero dynamics
ones. The output can be generally defined as a function of the zero
dynamics variables such that

e|O = 0, (3.15)

that is, assumed that output variables are defined as virtual con-
straints, such constraints are asymptotically (exponentially, if the sys-
tem is hybrid) realized on the orbit O. The zero dynamics submanifold,
according to [80], is the restricted subset Z ⊂ X defined as

Z = {x ∈ X|e = 0}. (3.16)

Additionally, if ė = 0, then the zero dynamics submanifold Z is forward
invariant, i.e., it is invariant under the swing dynamics,

Z = {x ∈ X|e = 0, ė = 0}. (3.17)

The zero dynamics manifold Z defined as in (3.17) is only forward
invariant. To achieve invariance under both continuous and discrete
dynamics, the concept of hybrid zero dynamics has been developed in
[66], which represents the extension of the concept of maximal internal
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dynamics compatible with the output being identically zero to the class
of hybrid systems with impulse effects. According to (3.14), the zero
dynamics formulation of (3.9) is

Σzd =


ẋ = f(x) + g(x)u(x, e) (x, e) ∈ X\S,
ė = r(x) + w(x)u(x, e) (x, e) ∈ X\S,
x+ = ∆(x−) (x−, e−) ∈ S,
e+ = ∆(e−) (x−, e−) ∈ S,

(3.18)

besides, f(x), r(x), g(x), and w(x) are assumed to be locally Lipschitz
continuous functions.

Then, the control problem reduces to solve two lower dimensional
ones:

1) establish the stability of an orbit contained in the hybrid zero
dynamics submanifold;

2) ensure the exponential convergence of the output variables to the
hybrid zero dynamics submanifold.

There are several approaches to face this problem, ranging from those
based on input-output linearization [66, 67] to those based on con-
trol Lyapunov functions [22, 65] and passivity-based control [69]. All
these methodologies share the same overall architecture, based on the
two-steps approach discussed before, as well as, the requirement that
output dynamics converge exponentially fast to the hybrid zero dy-
namics submanifold. As explained in [12, 65], the impact map has
an expansive behavior that rejects output dynamics from converging
to the hybrid zero dynamics submanifold. To overcome the resulting
divergence, such submanifold, in particular the orbit contained in it,
must be sufficiently fast-attracting, hence exponential convergence is
required. Besides, if the addressed biped is planar, it is sufficient to
guarantee exponential convergence of output dynamics to Z and make
it hybrid invariant, that is invariant under both swing dynamics and
foot-strikes [67, 68]. If exponential convergence of output dynamics is
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guaranteed, hence hybrid invariance follows from nominal virtual con-
straints vanishing along the orbit [12]. Indeed, for 2D biped models
with one degree of underactuation, no compliance, and a rigid impact
map, it is showed in [67] that any forward invariant manifold Z, con-
taining a periodic orbit O, is also impact invariant and hence hybrid
invariant. In particular, as demonstrated in [67, Theorems 5.2, 6.2],
this result holds if the hypotheses on the robot model, as well as, those
on both the gait nature and the impact model are assumed. On the
other hand, this is result does not hold for 3D biped models, for which
is necessary to extend (3.18) using a hybrid deadbeat extension, as out-
lined in [12, 68].

3.2.4 The CBR

The compass-like biped robot (CBR) is a 2-DoF, planar, and bipedal
walking robot belonging to the class of passive walkers, which satisfies
the hypothesis on the robot model, as well as, those on the impact
event, RH.1-RH.4 and IH.1-IH.4, respectively. In particular, the
CBR consists of two legs joined by the hip of mass mH > 0. Each leg
has mass m > 0 and length l = a + b, where a > 0 is the length of
the legs between m and the feet while b > 0 is the length of the legs
between mH and m, supposing both mH and m to be point masses. A
representation of such a biped robot is depicted in Figure 3.2, where q1

is the angle between the vertical relative to the ground and the stance
leg while q2 is the angle between the vertical relative to the ground
and the swing leg. The conjugated momenta are denoted by p1 and
p2, respectively.

The behavior of the CBR consists of two distinct phases. The swing
phase of the CBR is described by (A.1) with the elements of the inertia
matrix M(q) as

b11 = (mH +m)l2 +ma2,

b12(q) = −mlb cos (q1 − q2),

b22 = mb2,

(3.19)
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Figure 3.2: Scheme of a compass-like biped robot (CBR).

with H(q) as in (3.2), where

V (q) = (m(a+ l) +mH l)g cos (q1)−mbg cos (q2) (3.20)

with g ' 9.81 m/s2 the gravity acceleration. The impact phase is
described by (3.11). An impact occurs when the conditions

ysw(q) = l[cos (q1 + ϕ)− cos(q2 + ϕ)] = 0,

ẏsw(q) = l[sin (q2 + ϕ)q̇2 − sin(q1 + ϕ)q̇1] < 0,
(3.21)

hold. The change in generalized velocities, assuming true IH.1-IH.4,
is described by

q̇(t+) = P (q(t−))q̇(t−), (3.22)

where q̇ =
[
q̇1 q̇2

]T ∈ R2 is the velocity vector, while the time in-
stants just before and just after the impact are given by t− and t+,
respectively. From now on q± = q(t±) as well q̇± = q̇(t±) to ease the
notation. The conservation of angular momentum law is used to derive
the expression of the matrix P (q−) ∈ R2×2, which is

P (q−) =

[
p+

11 p+
12

p+
21 p+

22

]−1 [
p−11 p−12

p−21 p−22

]
, (3.23)
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with
p+

11 = ml(l − b cos (q−1 − q−2 )) +ma2 +mH l
2,

p+
12 = mb(b− l cos (q−1 − q−2 )),

p+
21 = −mbl(cos (q−1 − q−2 )),

p+
22 = mb2,

p−11 = −mab+ (mH l
2 + 2mal) cos (q−1 − q−2 ),

p−12 = p−21 = −mab,
p−22 = 0.

(3.24)

Since the CBR exhibits a gait with left-right symmetry, at each impact
the angles are swapped and relabelled (i.e., when an impact occurs, the
former swing leg becomes the stance one and vice-versa). Hence, these
angles are not associated with a physical leg, but they are referred to
as the action played by the leg during the gait. This procedure is taken
into account via the matrix

R =

[
0 1
1 0

]
(3.25)

which results in
q+ = Rq− (3.26)

at each impact. The interested reader can refer to the work in [53]
for further details. It must be underscored that such kind of robot is
not physically realizable due to the scuffing between the nonsupport
foot and the the ground. In real prototypes foot scuffing is avoided by
particular mechanical designs, as the one proposed in [81], whereas in
this paper it is avoided by ignoring (3.21) whenever the nonsupport
leg is behind the support one [16].

A summary of the TORA and CBR models, with their equations
fully and explicitly written, is incorporated in Table 3.1 to simplify the
reading of next sections.
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Table 3.1: Models of the systems deployed in this thesis to test the
proposed control strategies.

system model

TORA

[
q̇
ṗ

]
=

[
02 I2

−I2 02

] [∂H(q,p)
∂q

∂H(q,p)
∂p

]
+

[
0n×m
Gp(q)

]
u(q, p)

H(q, p) =
1

2
pT
[
b11 b12(q)
b12(q) b22

]
p+ V (q)

b11 = m1l
2 + I, b12(q) = m1l cos(q1), b22 = m1 +m2

V (q) =
1

2
kq2

2 +m1lg(1− cos (q1))

CBR



[
q̇

ṗ

]
=

[
02 I2

−I2 02

][
∂H(q,p)
∂q

∂H(q,p)
∂p

]
+

[
0n×m

Gp(q)

]
u(q, p) (q, p) ∈ X\S

q+ = Rq− q− ∈ S
q̇+ = P (q−)q̇− (q−, q̇−) ∈ S

H(q, p) =
1

2
pT
[
b11 b12(q)
b12(q) b22

]
p+ V (q)

b11 = (mH +m)l2 +ma2, b12(q) = −mlb cos (q1 − q2), b22 = mb2

V (q) = (m(a+ l) +mH l)g cos (q1)−mbg cos (q2)

R =

[
0 1
1 0

]
P (q(t−)) =

[
p+

11 p+
12

p+
21 p+

22

]−1 [
p−11 p−12

p−21 p−22

]
p+

11 = ml(l − b cos (q−1 − q−2 )) +ma2 +mH l
2

p+
12 = mb(b− l cos (q−1 − q−2 ))

p+
21 = −mbl(cos (q−1 − q−2 ))

p+
22 = mb2

p−11 = −mab+ (mH l
2 + 2mal) cos (q−1 − q−2 )

p−12 = p−21 = −mab
p−22 = 0



Chapter 4

IDA-PBC with Explicit
Solution of PDEs

Remark. Refer to Appendix A.1 for details about the IDA-PBC method-
ology for 2-DoF mechanical systems, as well as, for the standard pro-
cedure to solve matching equations.

4.1 A Mixed Parameterized-Algebraic IDA-
PBC Approach

The key idea of the methodology presented in [1] is to combine the
advantages of the parameterized IDA-PBC and the algebraic IDA-
PBC. After giving a suitable parameterization for Md(q) complying
with C.11, it is possible to retrieve a family for the desired potential
energy Vd(q) in which impose the condition C.2. For the considered
2-DoF mechanical systems, to comply with C.3, the interconnection
matrix can be uniquely defined as

J2 =

[
0 j2(q, p)

−j2(q, p) 0

]
, (4.1)

1Conditions C.1, C.2, and C.3 are listed in Appendix A.1

46
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where j2(q, p) : R2×R2 → R is a scalar function. Having at disposition
both Md(q) and Vd(q), as for the algebraic IDA-PBC, the KE-ME
becomes an algebraic equation in j2(q, p)

G⊥p∇q

(
pTM−1(q)p

)
−G⊥pMd(q)M

−1(q)∇q

(
pTM−1

d (q)p
)

− 2j2(q, p)G
T
pM

−1
d p = 0,

(4.2)

whose solution is given by

(4.3)
j2(q, p) =

G⊥p (∇q(p
TM−1(q)p)−Md(q)M(q)−1∇q(p

TM−1
d (q)p))

2GT
pM

−1
d (q)p

.

Define Gp =
[
1 0

]T
and, as a consequence, G⊥p =

[
0 1

]
. This par-

ticular choice, which does not affect in any way the generality of the
methodology, holds true throughout whole Chapters 4, 5, and 6. So-
lution (4.3) exhibits a singularity in the generalized momenta p

GT
pM

−1
d (q)p = 0⇒[

1 0
] [ md22(q) −md12(q)
−md12(q) md11(q)

] [
p1

p2

]
= 0

⇐⇒ (md22(q)p1 −md12(q)p2) = 0.

(4.4)

Hence, the singularity appears when either md22(q)p1 = md12(q)p2 or
the system is at the equilibrium, p? = 02. The former condition is not
predictable a priori. The latter is a consequence of the detectability-like
condition required to guarantee the asymptotic stability of the closed-
loop equilibrium when (A.11) is introduced in the control action. Such
a condition requires that the passive output yd = GT

pM
−1
d (q)p, which is

exactly the denominator of (4.3), nullifies at the equilibrium. This sin-
gularity due to the generalized momenta p is a problem for mechanical
systems and it is present in many works [64, 82]. In these papers, the
problem was worked around either numerically or with an ad-hoc so-
lution for the peculiar addressed case study. In [64], an analysis on the
order of the various terms appearing in (4.3) is carried out. Despite the



IDA-PBC with Explicit Solution of PDEs 48

numerator of (4.3) tends toward zero faster than the denominator, due
to the quadratic dependence on p exhibited by the first, the same anal-
ysis cannot address the singularity condition md22(q)p1 = md12(q)p2

because it arises far from the equilibrium p = 0. Hence, a different
approach to remove it is required. In the next section, it will be shown
how the methodology proposed in [1] can remove such a singularity
in p structurally. Notice that further fractional functions may be in-
troduced within (4.3) from the choice of Md(q): singularities in the
generalized coordinates q must be managed during the design of the
target inertia matrix.

4.2 Constructive Methodology

In this section, with a little abuse of notation, it will also be high-
lighted the dependency on some parameters to be tuned. Besides, in
the following, given a generic function f(q), the notation f(

[
qa qb

]
)

means that the variable q1 is substituted by qa and the variable q2 is
substituted by qb, respectively.

As explained before, the key idea is to combine the advantages of
both the parameterized IDA-PBC and the algebraic IDA-PBC, solv-
ing each singularity issue. Hence, the resulting approach provides an
explicit solution of the PE-ME and requires to solve the KE-ME as
an algebraic equation, just like the algebraic IDA-PBC does, with-
out assigning the exact values of Md(q) and Vd(q), in the spirit of the
parameterized IDA-PBC, and without introducing any singularity in
j2(q, p). As expressed in [64], the starting point is the parameterization
of the desired inertia matrix in (A.3) as

(4.5)
Md(q, c1) =

[
md11(q, c1) md12(q, c1)
md12(q, c1) md22(q, c1)

]
= ∆(q)

[
a11(q, c1) a12(q, c1)
a12(q, c1) a22(q, c1)

]
where

∆(q) = b11(q)b22(q)− b12(q)
2, (4.6)
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is the determinant of M(q), c1 ∈ Rnc1 is a set of gains useful to design
the controller, with nc1 > 0, and aij(q, c1) ∈ R are scalar functions to
be defined and related to Md(q, c1). Under this parameterization, the
PE-ME (A.9) becomes

G⊥p (∇qV (q)− Γ(q, c1)∇qVd(q, c2)) = 0, (4.7)

with c2 ∈ Rnc2 a set of gains useful to design the controller, with
nc2 > 0, and

Γ(q, c1) = Md(q, c1) M(q)−1 =

[
Γ11(q, c1) Γ12(q, c1)
Γ21(q, c1) Γ22(q, c1)

]
(4.8)

where

Γ11(q, c1) = a11(q, c1)b22(q)− a12(q, c1)b12(q),

Γ12(q, c1) = a12(q, c1)b11(q)− a11(q, c1)b12(q),

Γ21(q, c1) = a12(q, c1)b22(q)− a22(q, c1)b12(q),

Γ22(q, c1) = a22(q, c1)b11(q)− a12(q, c1)b12(q).

The key of the approach is to introduce a scalar function γ(q, c1) ∈ R
that parameterizes the second row of Γ(q, c1) as

a22(q, c1)b12(q)− a12(q, c1)b22(q) = k1γ(q, c1), (4.9a)

a12(q, c1)b12(q)− a22(q, c1)b11(q) = k2γ(q, c1), (4.9b)

with k1, k2 ∈ R and k1 6= 0. The specific case with k1 = 0 and k2 6= 0
is presented in the next subsection. Such a choice simplifies (4.7) as

∇q2V (q) + γ(q, c1)(k1∇q1Vd(q, c2) + k2∇q2Vd(q, c2)) = 0, (4.10)

which is a linear PDE, hence a modified version of Frobenius Theorem
can be invoked to claim existence of solutions (for the sake of brevity,
this analysis will be omitted from this thesis). As shown in [64], an
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explicit solution of (4.10) is

(4.11)
Vd(q, c2) = −

∫ q1

1

∇q2V

([
σ

k1q2 − k2q1 + k2σ

k1

])
k1γ

([
σ

k1q2 − k2q1 + k2σ

k1

]) dσ

+ f1

(
k1q2 − k2q1

k1
, c2

)
,

with f1(·, ·) ∈ R any scalar function of its arguments.
Indeed, the PDE (4.10) admits an explicit solution provided that a

right γ(q, c1) is found to: (i) guarantee a closed-form solution for the
integral in (4.11); (ii) shape Vd(q, c2) such as to comply with C.2; and
(iii) avoid the singularity in the interconnection matrix. The fulfill-
ment of the first requirement is explained in Appendix B.1. Concern-
ing the second requirement, the degrees of freedom given by f1(·, ·) and
γ(q, c1) may help in satisfying C.2 as well as to avoid singularities in the
generalized coordinates q. Otherwise, other choices for γ(q, c1) must
be done. The fulfillment of the last requirement is addressed in the
following. For the moment, consider that the Vd(q, c2) is found. Then,
the desired inertia matrix can be computed through (4.5) and (4.9). In
particular, it is possible to retrieve the scalar functions a12(q, c1) and
a22(q, c1) as

a12(q, c1) = −k1γ(q, c1)b11(q) + k2γ(q, c1)b12(q)

∆(q)
, (4.12a)

a22(q, c1) = −k1γ(q, c1)b12(q) + k2γ(q, c1)b22(q)

∆(q)
, (4.12b)

while a11(q, c1) is left free such as to satisfy C.1. If it is not pos-
sible to find a desired inertia matrix which matches the criteria ex-
pressed by C.1, it is then necessary to design again the set of gains
c1, as well as, the scalar function f1(·, ·), and eventually γ(q, c1), un-
til both C.1 and C.2 are simultaneously met. Once that Md(q, c1)
and Vd(q, c2) are found, the KE-ME (4.2) is an algebraic equation with
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j2(q, p) as unknown and whose solution is (4.3). However, as said, the
solution (4.3) suffers of a singularity problem. To avoid this, a suitable
γ(q, c1) must be found to fix this problem. Therefore, not any γ(q, c1)
can be thus considered to deal with C.1 and C.2 through Md(q) and
Vd(q, c1) in (4.12) and (4.11), respectively. The key for the solution is
to recognize j2(q, p) as a fractional function

j2(q, p) =
n(q, p)

d(q, p)

=
G⊥p (∇q(p

TM−1(q)p)−Md(q)M(q)−1∇q(p
TM−1

d (q)p))

2GT
pM

−1
d (q)p

.

(4.13)

Let ζ(q, p) ∈ R and η(q, p) ∈ R the quotient and the reminder of
j2(q, p), respectively. The expression (4.13) becomes

n(q, p)

d(q, p)
= ζ(q, p) +

η(q, p)

d(q, p)
. (4.14)

Nullifying the remainder η(q, p) brings the solution η(q, p) = 0 imply-
ing j2(q, p) = ζ(q, p), which is structurally not affected by any singular-
ity in p. Taking into account (4.12) and (4.13), the equation η(q, p) = 0
to nullify the remainder can be written as

(4.15)
γ(q, c1)(k1γ(q, c1)(−k1∇q2b11(q)
− k2∇q2b12(q) + k1∇q1b12(q) + k2∇q1b22(q))
+ (k1b12(q) + k2b22(q))(k2∇q2γ(q, c1) + k1∇q1γ(q, c1))) = 0,

which is a PDE in the scalar function γ(q, c1). The PDE (4.15) has
two explicit solutions. The first one is trivial, γ(q, c1) = 0, and it is not
allowed because it would imply both (4.12a) and (4.12b) to be zero,
preventing the fulfilling of C.1. The second solution is

γ(q, c1) = f2(q, c1)f3

(
k1q2 − k2q1

k1
, c1

)
, (4.16)
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where f3(·, ·) ∈ R is any scalar, continuous, and nonzero function of its
arguments, while f2(q, c1) is

(4.17)
f2(q, c1) = exp

(∫ q1

1

k1(∇q2b11(·)−∇q1b12(·))
k1b12(·) + k2b22(·)

+
k2(∇q2b12(·)−∇q1b22(·))

k1b12(·) + k2b22(·)
dσ

)
,

where bij(·) = bij(
[
σ f4(q, σ)

]
) to compact notation, with i, j = {1, 2},

exp(k) = ek, and f4(q, σ) = (k1q2 − k2q1 + k2σ)/k1. The expres-
sion (4.17) holds if the integral exists: the discussion and the proof is
within Appendix B.2. The solution (4.16) gives the structure on how
construct γ(q, c1) to avoid the singularity in j2(q, p). Hence, the func-
tion γ(q, c1) is given by two parts: (i) f2(q, c1) that is fixed by (4.17)
depending on k1, k2, and M(q); (ii) f3(·, ·) that is free to be chosen
to comply with C.1 and C.2 through Vd(q, c2) and Md(q, c1) in (4.11)
and (4.12), respectively. The gains are also useful to avoid singularities
in the generalized coordinates q within the introduced functions. Any
other choice of γ(q, c1) may bring to a valid controller, but resulting
in j2(q, p) with a singularity in the generalized momenta that has to
be managed in other ways [64]. Finally, once got j2(q, p) as in (4.13),
being sure that no singularity in p will appear, the control law can be
computed as in (A.13). The flow-chart represented in Figure 4.1 re-
sumes the derived constructive solution, whose existence is guaranteed
by the existence of the integrals within equations (4.11) and (4.17) (see
Appendix B.1, B.2).

The novelties introduced within this methodology do not jeopar-
dize the property of asymptotic stability of the sought equilibrium
guaranteed by the introduction of the udi control term. To check the
detectability of the passive output (A.12), it is sufficient to show that
q → q? when yd = 0. Recalling the expression of yd in (A.12), since
Md(q) is always positive definite because of C.1, then yd = 0⇐⇒ p =
02. When p = 02, the closed-loop (A.3) becomes[

02

−Md(q, c1)M(q)−1∇qVd(q, c2)

]
= 04. (4.18)
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Given the expression of the target closed-loop Hamiltonian function

Hd(q, p) =
1

2
pTMd(q, c1)p + Vd(q, c2), the equations in the last two

rows of (4.18) are satisfied if one of the following relationships holds:

1) det(−Md(q, c1)M(q)−1) = 0;

2) ∇qVd(q, c2) = 02.

The former condition is not met because it requires that det(Md(q, c1))=
0 which is false because C.1 holds. The latter is satisfied at the equi-
librium q? because of the validity of C.2. Hence, the detectability
condition of the passive output is locally guaranteed: the desired equi-
librium is locally asymptotically stable with a basin of attraction that
can be estimated using the LaSalle’s invariance principle, as shown
in [9, 83].

Remark The proposed methodology can be applied to an underac-
tuated mechanical system in the form (A.1). Indeed, the parameteriza-
tion of the desired inertia matrix does not pose limits on the applicabil-
ity range of such a methodology. Besides, unlike the method proposed
in [64], it does not introduce any singularity depending on generalized
momenta in the control law.

4.2.1 Constructive Methodology with k1 = 0 and

k2 6= 0

A particular solution can be achieved through the choice k1 = 0 and
k2 6= 0. In detail, the expressions (4.9) become

a22(q, c1)b12(q)− a12(q, c1)b22(q) = 0, (4.19a)

a12(q, c1)b12(q)− a22(q, c1)b11(q) = k2γ(q, c1). (4.19b)

Such a choice further simplifies (4.10) as

∇q2V (q) + γ(q, c1)k2∇q2Vd(q, c2) = 0, (4.20)
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1 - Take M(q) and V (q)
from the original system.

2 - To get a suitable γ(q, c1) func-
tion as in (4.16), choose f3(·, ·)

and compute f2(q, c1) as in (4.17).
Compute Vd(q, c2) as in (4.11).

3 - Verify
with a
proper

choice of
f1(·, ·), c1,
and c2 that
Vd(q, c2) fits
C.2 and no
singularity

in q appears.

4 - Compute a12(q, c1) as in
(4.12a) and a22(q, c1) as in

(4.12b). Choose a11(q) suitably.

5 - Verify
with a
proper

choice of
c1 that
Md(q, c1)

fits C.1, no
singularity

in q appears,
and (B.2)

holds.

6 - Compute j2(q, p) as in (4.13). Com-
pute the control law u as in (A.13)

Vd(q, c2)

yes

Md(q, c1)

yes

no

no

Figure 4.1: Flow chart of the proposed constructive solution.
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whose explicit solution is

Vd(q, c2) = −
∫ q2

1

∇q2V
([
σ q1

])
k2γ

([
σ q1

]) dσ + f1 (q1, c2) , (4.21)

with f1(q1, c2) ∈ R is now function of q1 only and some gains. Once
that the Vd(q, c2) is found and C.2 is established, the desired inertia
matrix can be computed as done for k1 6= 0. The scalar functions
a12(q, c1) and a22(q, c1) are now equal to

a12(q, c1) = −k2γ(q, c1)b12(q)

∆(q)
, (4.22a)

a22(q, c1) = −k2γ(q, c1)b22(q)

∆(q)
, (4.22b)

while a11(q, c1) is left free to satisfy C.1. The remaining part of the
procedure is the same. Therefore, once that Md(q, c1) and Vd(q, c2)
are found, the function j2(q, p) should be computed. However, the
function γ(q, c1) should be chosen properly to avoid singularity in the
generalized momenta in the denominator of j2(q, p). Following the
same idea, the equation to nullify the remainder (4.15) simplifies into

k2
2γ(q, c1)b22(q)∇q2γ(q, c1) = 0, (4.23)

which is a PDE in the scalar function γ(q, c1). The previous PDE has
again two explicit solutions. The first is trivial, γ(q, c1) = 0, and it is
not allowed because it would imply (4.22a) and (4.22b) to be zero, pre-
venting the fulfilling of C.1. The latter solution is γ(q, c1) = f3(q1, c1),
where now f3(q1, c1) ∈ R is any scalar, continuous, and nonzero func-
tion of q1 only and some gains. Therefore, in the particular case k1 = 0
and k2 6= 0, the degrees of freedom given by f1(·, ·) and γ(·, ·) depend
on q1 only and some gains. These should be employed to fulfil C.1 and
C.2, as well as to avoid singularities in q. Notice that, given the argu-
ments in the Appendix B, the existence of the integral within (4.21)
is trivial. The flow-chart represented in Figure 4.1 holds also in the
case of k1 = 0 and k2 6= 0 with the described changes. The possibility
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of choosing k1 = 0 and k2 6= 0 or not depends on the particular case
study. It indeed simplifies the solution but bestows fewer degrees of
freedom to the control design. In the following, both approaches will
be employed for two different case studies.



Chapter 5

Energy Shaping for
Equilibrium Point
Stabilization

To ease the understanding of the procedure presented in Chapter 4,
the design of the stabilizing controller for the TORA system has been
divided into steps that have been numbered as in the flow chart in
Figure 4.1.

5.1 Stabilization of the TORA System via
IDA-PBC with Explicit solution of PDEs

5.1.1 Step 1

Without loss of generality, the procedure presented in this paper is
applied to stabilize the TORA (with M(q) and V (q) summarized in
Table 3.1) at the desired equilibrium point (q?, p?) = (π, 0, 0, 0).

57



Energy Shaping for Equilibrium Point Stabilization 58

5.1.2 Step 2

The following procedure assumes k1 6= 0. To get a proper function
γ(q), a constant f3 ((k1q2 − k2q1)/k1) = k3 is picked up, with k3 6= 0 a
suitable gain. Taking into account (3.5), the expression (4.17) becomes

f2(q) =
1

(k2(m1 +m2) + k1m1l cos q1)
,

with k2 > k1m1l/(m1 + m2) to avoid any singularity in f2(q). Then,
the suitable scalar function γ(q, c1) in (4.16) becomes

γ(q) =
k3

(k2b22 + k1lm1 cos q1)
.

The f1 ((k1q2 − k2q1)/k1) function in (4.11) is chosen as follows

f1

(
k1q2 − k2q1

k1

)
= k4

(
k1q2 − k2q1

k1

)2

, (5.1)

with k4 ∈ R a suitable gain. With the above choice and expressions,
the desired potential energy in (4.11) is

Vd(q) =
b22kk

2
2q

2
1 − 2b22kk1k2q1q2 − 2kk1k2lm1 cos q1

2k2
1k3

+

−2kk2
1lm1q2 sin q1 + 2k2

1k3k4

(
k1q2 − k2q1

k1

)2

2k2
1k3

.

(5.2)

5.1.3 Step 3

The evaluation of the gradient ∇qVd(q) in q? = (π, 0) yields

∇qVd(q)

∣∣∣∣
q?

=


k2

2(b22k + 2k3k4)π

k2
1k3

−k2(b22k + 2k3k4)π

k1k3

 , (5.3)
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which becomes

∇qVd(q)

∣∣∣∣
q?

= 02, (5.4)

if the condition k4 = −b22k/(2k3) holds. The Hessian of Vd(q), evalu-
ated in q? = (π, 0), is

∇2
qVd(q)

∣∣∣∣
q?

=


2b22kk

2
2 + 4k2

2k3k4 − 2kk1k2m1l

2k2
1k3

−2b22kk1k2 − 4k1k2k3k4 + 2kk2
1m1l

2k2
1k3

−2b22kk1k2 − 4k1k2k3k4 + 2kk2
1m1l

2k2
1k3

2k4

 .
(5.5)

This last is positive definite if the conditions

k1 > 0, k2 >
k1m1l

b22
, k3 < 0, k4 = −b22k

2k3
(5.6)

are met. Since these conditions are not in contrast with the ones
found previously for the same gains, the procedure can continue. The
condition C.2 is thus checked.

5.1.4 Step 4

The scalar functions a12(q) and a22(q) are evaluated using (4.12), while
a11(q) is free and it is here computed as proposed in [64]

a11(q) = k5
a2

12(q)

a22(q)
, (5.7)
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with k5 6= 0 a suitable gain. With the above choices, the desired inertia
matrix is

Md(q) =

−
k3k5(b11k1 + k2m1l cos q1)

2

(b22k2 + k1m1l cos q1)2

−k3(b11k1 + k2m1l cos q1)

b22k2 + k1m1l cos q1

−k3(b11k1 + k2m1l cos q1)

b22k2 + k1m1l cos q1

−k3

 ,
(5.8)

whose determinant is equal to

∆d(q) =
k2

3(−1 + k5)(b11k1 + k2m1l cos q1)
2

(b22k2 + k1m1l cos q1)2
. (5.9)

5.1.5 Step 5

To comply with C.1, it should be proven that the desired inertia matrix
is positive definite. Thanks to the Sylvester’s criterion, this is true if
both a11(q) > 0 and ∆d(q) > 0. Given (5.6), the former is true if

k2 6=
k1(l

2 + r2)

l
, k5 > 0. (5.10)

On the other hand, the latter condition is true if k5 > 1. Therefore

k2 6=
k1(l

2 + r2)

l
, k5 > 1 (5.11)

are the conditions to fulfill C.1.

5.1.6 Step 6

The interconnection term j2(q, p) in (4.13) becomes

j2(q, p) =
k1(−b11k

2
1 + b22k

2
2)k3p1m1l sin q1

(b22k2 + k1m1l cos q1)2(b11k1 + k2m1l cos q1)
, (5.12)
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which does not show any dependence on the generalized momenta at
the denominator and, therefore, on the passive output, as expected.
However, to avoid any singularity in the q variables, the conditions
k2 > k1m1l/b22 and k2 6= k1(l

2 + r2)/l must hold. Both the conditions
can be dropped because already contained within (5.6) and (5.10),
respectively. Therefore, the set of gains avoiding any singularities and
satisfying C.1, C.2, and C.3 are

k1 > 0, k2 >
k1m1l

m1 +m2
∧ k2 6=

k1(l
2 + r2)

l
, k3 < 0,

k4 = −b22k

2k3
, k5 > 1.

(5.13)

Notice that the constant terms b11 and b22 were often not explicitly
expressed due to space constraints and for the sake of clarity. In addi-
tion, the condition k2 > k1m1l/(m1 +m2) agrees with (B.2), ensuring
the existence of the integral in (4.17) and in (4.11).

Finally, the sum between the energy shaping (A.10) and the damp-
ing injection (A.11) is the total control action.

5.2 Numerical Evaluation

The current section aims to demonstrate the effectiveness of the de-
signed controller for the TORA. To recap, the sought control goal is to
stabilize the system, described by (3.6) and (3.5) at the desired equi-
librium point (q?, p?) = (π, 0, 0, 0). The nominal dynamic parameters
chosen for the TORA model are m1 = 1 kg, m2 = 10 kg, l = 1 m,
r = 0.1 m, k = 5 and g = 9.81 m/s2. The performance of the pro-
posed control law is evaluated in presence of parametric uncertainties,
noisy measurements, and a time delay introduced by the discretiza-
tion of the controller. The test is carried out on a standard personal
computer in the MATLAB/Simulink environment using the ODE45
routine. The robustness in the presence of parametric uncertainties is
tested by considering, in the control law, an increment of the 20 % in
the value of the parameters m1, m2, l, r and k contained inside the
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Table 5.1: Parameters and initial conditions characterizing the TORA
model used in simulations.

inertial and kinematic parameters initial conditions
m1 = 1 kg,m2 = 10 kg

l = 1 m, r = 0.1 m

k = 5, g = 9.8 m/s2

q1(0) = π/2 rad, q2(0) = 0.1 m

p1(0) = 0 (kg rad)/s, p2(0) = 0 (kg m)/s

model. Moreover, in order to evaluate the performance in presence of
noisy measurements, a white noise is added to the signals q1(t), q2(t),
p1(t), and p2(t), with a variance of 0.05, 0.01, 0.05, and 0.01, respec-
tively. The discretization of the controller is also taken into account by
sampling the control law each 0.01 s. The controller has been designed
with gains k1 = 1, k2 = 0.14, k3 = −1, k4 = 39.6, k5 = 2, kd = 20.
They comply with the conditions in (5.13). The simulation starts with
initial conditions q1(0) = π/2 rad, q2(0) = 0.1 m, p1(0) = 0 (kg rad)/s,
p2(0) = 0 (kg m)/s and lasts for 100 s. A summary of the inertial and
kinematic parameters characterizing the TORA model deployed in the
following simulations, as well as, of the initial conditions selected, is
given in Table 5.1.

Figure 5.1 depicts the time evolution of the closed-loop systems po-
tential energy which, as expected, reaches its local minimum located in
q?. As shown in Figure 5.2 and Figure 5.3 , the state trajectories of the
system asymptotically converge to the desired values in roughly 40 s,
with performance comparable with the methodologies belonging to the
state of art in the control of the TORA, exhibiting small amplitude
oscillations due to the presence of noisy measures.
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(a) Front view of Vd(q) surface.

(b) Top view of Vd(q) surface.

Figure 5.1: Evolution of the closed-loop system potential energy during
a test carried out with perturbed conditions. Potential energy (the
green curve) evolves from its initial value (the yellow dot) until it
reaches its minimum (the red dot).
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(a) Time history of q1
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Figure 5.2: Time histories of the generalized coordinates during a test
carried out in presence of parametric uncertainties, noisy measure-
ments, and controller discretization.



Energy Shaping for Equilibrium Point Stabilization 65

0 10 20 30 40 50 60 70 80 90 100
-3

-2

-1

0

1

2

3

(a) Time history of p1

0 10 20 30 40 50 60 70 80 90 100
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b) Time history of p2

Figure 5.3: Time histories of the generalized momenta during a test
carried out in presence of parametric uncertainties, noisy measure-
ments, and controller discretization.



Chapter 6

Energy Shaping for
Gait Generation

The objective of this chapter is to demonstrate the effectiveness of
IDA methodologies to generate gaits that cannot be exhibited by the
uncontrolled CBR. The introduction of a controller, which exerts his
action during the swing phase, gives birth to gaits that the uncontrolled
CBR cannot exhibit unless to change the mass/geometrical properties
of the robot and/or the slope of the surface on which the robot walks.
These artificial gaits are associated with several limit cycles in the
state space of the CBR. These limit cycles, representing the asymp-
totic behavior of the closed-loop, are due to the impacts between the
swing leg and the ground. Specifically, the focus is on efficient periodic
locomotion, more than on robust walking, hence more effort has been
put to achieve a gait that is as close as possible to the human one,
from an energetic point of view. This choice is motivated by results
in robotics and biomechanics showing that actuation from the ankle
alone requires less energy to sustain continuous walking than hip-only
actuation does [84]. Hence, as already done in [16, 49], based on such
biomechanics arguments, the control schemes proposed in this chapter
are designed to take into account actuation at the ankles instead of the
hip. Nevertheless, presented approaches are general, hence they hold
even if the actuation is at the hip. As proof of this, the methodology

66
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proposed in Section 6.2 is also deployed in Section 7.4.2 to implement
an inner-loop energy shaping control in the context of the gait robus-
tification for a biped with unactuated ankles.

6.1 Total Energy Shaping VS Kinetic En-
ergy Shaping for Gait Generation

As already stated in Chapter 1, underactuated mechanical systems
require total energy shaping to be stabilized at a certain equilibrium
point, whereas an approach based on potential energy shaping only,
fails due to an unnatural inversion of the system which is imposed
along the reference trajectories [7, Section 10.3.1]. On the other hand,
when dealing with the periodic walking exhibited by an underactu-
ated passive walker, kinetic energy shaping alone has proved to be
effective in changing the forward speed of the biped. The choice to
shape only kinetic energy is motivated by studies on human and ani-
mal locomotion [85, 86], which demonstrate that step length is adjusted
simultaneously to speed change, during walking, to minimize energy
consumption. Based on such results, modifications of the closed-loop
kinetic energy are proposed in [16], firstly, and in [49], lately, with two
different approaches, the former based on CL and the latter on IDA-
PBC. Such modified kinetic energies result in simultaneous speed and
step length change, in a biomimetic fashion.

One of the objectives of the current chapter is to show that total
energy shaping impacts more dramatically, compared to kinetic-energy
shaping only, on the gait generation of a CBR and, in turn, that the
extra computational cost related to the solution of the PE-ME is worth
the price. In other words, this chapter aims to show that the introduc-
tion of a total energy shaping control action, like the ones exploited
in this work, effectively generate gaits that cannot be exhibited by the
uncontrolled biped and that go beyond the ones achievable via kinetic
energy shaping only (in terms of S and T parameters), and whose
stability is verified numerically a posteriori.
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6.2 Gait Generation for the CBR via IDA-
PBC with Explicit Solution of PDEs

The following procedure follows the constructive methodology pre-
sented in Section 4.2.1. To get a proper function γ(q1), a constant

f3(q1) = − 1

k2
2

(6.1)

function is picked up. With such a choice, results that

γ(q1) = − 1

k2
2

. (6.2)

Then, choosing the function f1(q1) in (4.21) as

f1(q1) = k3(ma+ (m+mh)l)g cos (q1), (6.3)

with k3 ∈ R a suitable gain, the desired potential energy in (4.21)
becomes

Vd(q) = k3g(ma+ (m+mH)l) cos (q1)− k2bmg cos (q2). (6.4)

Notice that the two gains k2 and k3 weigh the components of the orig-
inal system’s potential energy relative to the swing and the stance leg,
respectively. Since the CBR without the impact resembles a double in-

verted pendulum, the most natural choice seems to assign q∗ =
[
π 0

]T
as equilibrium, like the one in the mathematical model of the plant.
The sought goal is not to stabilize the system at the desired equilibrium
but rather to generate new gaits. The gradient of Vd(q, c2) is

∇qVd(q, c2) =

[
−k3(ma+ (m+mH)l)g sin (q1)

k2bmg sin (q2),

]
(6.5)

which, evaluated in q?, becomes

∇qVd(q, c2)

∣∣∣∣
q?

= 02. (6.6)
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The Hessian of Vd(q, c2), evaluated in q?, is

∇2
qVd(q, c2)

∣∣∣∣
q?

=

[
k3(ma+ (m+mH)l)g 0

0 k2bmg

]
. (6.7)

This Hessian matrix is positive definite if the conditions k2 > 0, k3 >
0 hold. Therefore, if k2 and k3 are simultaneously positive, C.2 is
satisfied. The scalar functions a12(q) and a22(q) are evaluated using,
respectively, (4.22a) and (4.22b) while the free term a11(q) is chosen as

a11(q) = k4
b11

k2∆(q)
, (6.8)

with k4 ∈ R a suitable gain. Thereby, the desired inertia matrix be-
comes

Md(q, c1) =
1

k2

[
k4b11 b12(q)
b12(q) b22

]
, (6.9)

whose determinant is

∆d(q) =
k4b11(q)b22(q)− b2

12(q)

k2
2

. (6.10)

To comply with C.1, it should be proven that the desired inertia matrix
is positive definite. Thanks again to the Sylvester’s criterion, this is
true if both a11(q) > 0 and ∆d(q) > 0. The former is true if both
k2 > 0 and k4 > 0. On the other hand, the latter condition is true if
k4 > (mlb)2/(b11b22). Hence, the choice

k2 > 0, k3 > 0, k4 >
(mlb)2

b11b22
(6.11)

satisfies both C.1 and C.2.
The scalar interconnection term j2(q, p), computed as in (4.13), has

the following expression

(6.12)j2(q, p) =
ψ1(q, p) + ψ2(q, p)

ψ3(q)
,
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with

ψ1(q, p) = b b11(−1 + k4)lm(−8b2
11b

2
22k4p2

+ 3b4l4m4p2 + 4b b22lm(−2b11b22(1 + k4)

+ 3b2l2m2)p1 cos(q1 − q2)),

ψ2(q, p) = b b11(−1 + k4)lm(4b4l4m4p2 cos(2(q1

− q2)) + 4b3b22l
3m3p1 cos(3(q1 − q2))

+ b4l4m4p2 cos (4(q1 − q2)) sin (q1 − q2)).

ψ3(q) = 8k2(b11b22 − b2l2m2 cos (q1 − q2)
2)2(b11b22k4

− b2l2m2 cos (q1 − q2)
2).

Both the denominator of (6.12) and the passive output are indepen-
dent from the generalized momenta. The gains chosen as in (6.11)
avoid any singularity depending on q, assuring that the denominator
of (6.12) never becomes zero. Notice that the terms b11, b22, and b12(q)
were often not explicitly expressed due to space constraints. The total
control action is given by (A.13).

6.2.1 Alternative choice of γ and a11

An alternative control contribution can be retrieved following the pro-
cedure presented in [2]. With

γ(q1) = − 1

k3
2

, (6.13)

and f1(q1) as in (6.3), while no substantial difference there is in the
expression of the desired potential energy which is exactly the same as
in (6.4), the main change is in the scalar functions a12(q) and a22(q),
evaluated using, respectively, (4.22a) and (4.22b), and, most of all, in
the free term a11(q) which is chosen as

a11(q) = k4
k5∆ + k7f5(q)b12(q)

2

∆(k6∆ + k7f5(q)b22)
, (6.14)
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with f5(q) ∈ R a function to be selected, and k4, k5, k6, k7 ∈ R some
gains.

6.3 Gait Generation for the CBR via SIDA-
PBC with Dissipative Forces

Remark. Notice that condition (A.20) can be relaxed in this section
since the main objective is not the regulation of the equilibrium point,
but the gait generation. Moreover, notice that the dissipative forces in
the controller are represented by the mapping C(q, p), as indicated in
[21].

A particular family of solutions is computed from the matching
PDEs related to SIDA-PBC. First, the PE-ME is solved by imposing
that the closed-loop and the open-loop dependency to the potential
energy with respect to q2 are equal, i.e.,

∇q2V (q) = ∇q2Vd(q). (6.15)

Then, the KE-ME is solved by fixing the structure of the Qi matrices.
Let

Md(q) =

[
md11(q) md12(q)
md12(q) md22(q)

]
(6.16)

be the desired inertia matrix and

Γ(q) = Md(q)M
−1(q) =

[
Γ11(q) Γ12(q)
Γ21(q) Γ22(q)

]
, (6.17)

the product between the desired inertia matrix and the inverse of the
open-loop one, similarly as expressed in (4.8). Then, the PE-ME (A.9)
becomes

G⊥p (∇qV (q)− Γ(q)∇qVd(q)) = 0. (6.18)

Since the actuation is on the stance ankle, meaning that Gp =
[
1 0

]T
and G⊥p =

[
0 1

]T
, results that the PE-ME (6.18) can be expressed as

∇q2V (q)− Γ21∇q1Vd(q)− Γ22∇q2Vd(q) = 0. (6.19)
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The PDE (6.19) is solved choosing Γ21(q) = 0 and Γ22(q) = 1. Hence,
md22 = b22 and md12 = b12(q). This implies that ∇q1Vd(q) is left free to
be chosen. The desired closed-loop potential energy is finally defined
as

(6.20)Vd(q) = g(ma+ (m+mH)l) cos (q1 + k3ϕ)− bmg cos (q2).

In order to solve the KE-ME, folding G⊥p into (A.15) yields

∇q2

(
pTM−1(q)p

)
−∇q2

(
pTM−1

d (q)p
)

+ 2C(q, p) = 0. (6.21)

By fixing the structure of the Q2 matrix as

Q2 =

[
Q11 Q12

Q12 Q22

]
, (6.22)

the component Λ22(q) can be written in terms of q̇1, for simplicity
reasons, and md11(q), which is the only free component of the desired
inertia matrix Md(q) so far, as

Λ22(q) =
−mlb b22 sin (q1 − q2) (b11 −md11 (q))

2b2
12(q)− 2b22md11 (q)

q̇1. (6.23)

Setting Λ12(q) = Λ21(q) and Λ11(q) = Λ22(q), a family of solutions
for the KE-ME is obtained through an appropriate selection of md11(q).
A possible choice for md11(q) is

md11(q) =
b2

11b22 − [b11 + k2 sin (q1 − q2)] b
2
12(q)

b11b22 − b2
12(q)− b22k2 sin (q1 − q2)

, (6.24)

with k2 a gain to be selected in order to meet C.1. Hence, Λii(q), with
i = 1, 2, yields to

Λii(q) =
−mlb b22ki sin

2 (q1 − q2)

2 (b11b22 − b2
12(q))

q̇1. (6.25)

Notice that, although Λii(q) depends on the velocity q̇1, this is always
negative during a gait, since the the support leg rotates always clock
wise (see Figure 3.2).



Energy Shaping for Gait Generation 73

By fixing the structure of the matrices Q2 and Λ(q), then the map-
ping C(q, p) is completely defined. Therefore, the matrix Q1 is deter-
mined intrinsically. Notice that, due to the switching conditions (3.21),
the equilibrium point of the closed-loop system will be never reached
if a stable limit cycle is generated. This implies that the stability
condition can be relaxed to generate gaits.

6.4 Gait Generation for the CBR via EPD-
PBC

Remark. The main objective of the controller is the gait generation,
and not the asymptotic stabilization of an equilibrium point, hence the
classical dissipation condition (A.24) can be relaxed.

Similarly to the considerations made in [16] relying on bio-mechanic
arguments, pumping energy at the beginning of each step while dissi-
pating it at the end

Ḣ(q, p) > 0 for ζ < q1 < π

Ḣ(q, p) = 0 for q1 = ζ

Ḣ(q, p) < 0 for − ζ < q1 < 0

(6.26)

seems to be an effective way to achieve larger step lengths and shorter
step periods for the generated gait. The other way round

Ḣ(q, p) < 0 for ζ < q1 < π

Ḣ(q, p) = 0 for q1 = ζ

Ḣ(q, p) > 0 for − ζ < q1 < 0

(6.27)

leads instead to shorter step lengths and greater step periods for the
generated gait. The introduction of the offset ζ > 0 in the transition
between the pumping regime and the damping one (and vice-versa) is
motivated by the intuition that feeding energy to the system in a wider
region of the phase plane should lead to a faster gait as, equivalently,
subtracting it should take to a slower one if compared to a transition in
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q1 = 0. This is realized by designing the scalar function e(q) : R2 → R
such as

e(q) =

{
e1(q) > 0 if q ∈ Z
e2(q) ≤ 0 if q ∈ R2 − Z

(6.28)

where Z ⊂ R2. Therefore, given (A.28), the controller (A.27) which
realizes the sought behavior in (6.26) and (6.27) is

upd(q, p) = kpd sin (q1)G
T
pM

−1(q)p, (6.29)

where the function e(q) = sin (q1), which meets (6.28), defines the sign
of Ḣ(q, p) once that the gain kpd ∈ R is fixed.

6.5 Gait Generation for the CBR via EPOD-
PBC

The choice e(q) = |sin(q1)q1| transforms the control action (6.29) into
the following energy pumping or damping controller

upod(q, p) = kpd|sin (q1)q1|GT
pM

−1(q)p. (6.30)

The control law (6.30) is equivalent to a damping injection control law
for kpd < 0, while it pumps energy for kpd > 0 in the sense that

Ḣ(q, p) < 0 for kpd < 0 and ∀ q1

Ḣ(q, p) = 0 for q1 = 0 and ∀ kpd
Ḣ(q, p) > 0 for kpd > 0 and ∀ q1

(6.31)

where the time derivative of the total energy, obtained by substituting
e(q) = |sin(q1)q1| into (A.28), is given by

Ḣ(q, p) = kpd|sin (q1)q1|q̇1
2. (6.32)
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6.6 Numerical evaluation

The current section aims to demonstrate the effectiveness of the de-
signed controllers for the CBR in generating new gaits. The nominal
dynamic parameters chosen for the CBR are mH = 10 kg, m = 5 kg,
a = 0.5 m, b = 0.5 m, g = 9.8 m/s2, and ϕ = 3 deg. Eight case
studies will be analyzed in the following and they are compared with
the passive gait. They start with the initial conditions

x(0) =
[
0.2187 −0.3234 −1.0918 −0.3772

]T
,

where the first two components are the generalized coordinates, while
the last two are the generalized velocities. Initial conditions have been
defined in terms of coordinates and velocities (as in [16, 49]) rather
than coordinates and momenta. Notice that the momenta are linearly
related to the velocities through the inertia matrix. All the gains are
experimentally tuned. The objective is the generation of two differ-
ent gaits which cannot be exhibited by the uncontrolled CBR. Re-
calling the S and T parameters describing a generic gait, the uncon-
trolled gait, which will be referred to as passive gait, is characterized by
S = 0.5347 m and T = 0.7347 s. The first desired gait is characterized
by a smaller step length S and a bigger period T : it will be referred to
as small gait. The second desired gait features an increased step length
S and a reduced period T : it will be referred to as large gait. Tests are
performed on a standard personal computer, using the Matlab ODE45
routine together with the event detection option active, to evaluate the
hits between the swing foot and the ground. The controller is imple-
mented at a discrete-time step of 0.01 s. A summary of the inertial and
kinematic parameters characterizing the biped’s model deployed in the
following simulations, as well as, of the initial conditions belonging to
the limit cycles, is given in Table 6.1.
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Table 6.1: Parameters and initial conditions characterizing the CBR
model used in simulations.

inertial and kinematic parameters initial conditions
mH = 10 kg,m = 5 kg

a = 0.5 m, b = 0.5 m

g = 9.8 m/s2, ϕ = 3 deg

q1(0) = 0.2187 rad, q2(0) = −0.3234 rad

q̇1(0) = −1.0918 rad/s, q̇2(0) = −0.3772 rad/s

6.6.1 Case Study I: Small Gait Generation via

IDA-PBC With Explicit Solution Of PDEs

In order to generate the small gait, the controller (A.13) is designed
as shown in Section 6.2, with γ(q1) as in (6.2) and a11(q) as in (6.8),
through the following set of gains k2 = 1.25, k3 = 0.45, k4 = 1.05 and
kd = 0.1, experimentally tuned complying with (6.11). The simulation
is carried out for 30 s. As shown in Figure 6.1, the step length S
and the step period T asymptotically converge to values 0.4871 m and
0.7854 s, which are respectively smaller and bigger than the parameters
S = 0.5347 m and T = 0.7347 s characterizing the passive gait. The
last one is generated by turning off the controller and using the same
initial conditions.

In a different way, the same controller is designed with γ(q1) as
in (6.13) and a11(q) as in (6.14), through the following set of gains
k2 = 1.1, k3 = 1, k4 = 1/k2, k5 = 0.04, k6 = 0, k7 = 1, and kd = 0.1.
The function f5(q) in (6.14) is chosen equal to 1 yielding

a11(q) = k4
k5∆ + b12(q)

2

∆b22
. (6.33)

To check the fulfillment of C.1, see [2]. The resulting controller is
similar to the one proposed in [49], apart from the potential energy
shaping stage and the damping injection. The designed controller leads
to a symmetric gait with S = 0.0417 m and T = 1.149 s, which is slower
than the slowest symmetric one proposed in [49] having S = 0.2012 m
and T = 0.9996 s. The gait parameters S and T converge to these
very small values as in Figure 6.2.
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Figure 6.1: Event histories of the step length and the step period
during Case Study I (γ(q1) as in (6.2) and a11(q) as in (6.8)).
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Figure 6.2: Event histories of the step length and the step period
during Case Study I (γ(q1) as in (6.13) and a11(q) as in (6.14)).
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6.6.2 Case Study II: Large Gait Generation Via

IDA-PBC With Explicit Solution Of PDEs

A large gait is achieved by designing the controller (A.13) as shown
in Section 6.2 with γ(q1) as in (6.2) and a11(q) as in (6.8) and gains
k2 = 0.8, k3 = 1.1, k4 = 0.9 and kd = 0.0, which fulfill again (6.11).
The simulation, as for Case Study I, lasts for 30 s. Figure 6.3 depicts
the step length S and the step period T which asymptotically converge
to values 0.5387 m and 0.7322 m, which are respectively bigger and
smaller than the parameters S and T characterizing the passive gait.

Complementary to previous test, the same controller is designed
with γ(q1) as in (6.13) and a11(q) as in (6.14). For this task, f5(q) =
sin (q1 − q2) which transforms (6.14) into

a11(q) = k4
k5b11b22 − b12(q)

2(k5 − k7 sin (q1 − q2))

∆(k6(b11b22 − b12(q)2) + k7 sin (q1 − q2)b22)
, (6.34)

where the selected gains ensuring C.1 ([2]) are k2 = 1.7, k3 = 1,
k4 = 0.588, k5 = b11 = 16.25, k6 = 1, k7 = 6.2, and kd = 0. The
simulation shows the generation of a symmetric gait characterized by
S = 0.8738 m and T = 0.6806 s, as depicted in Figure 6.4. This
gait is faster than the one in [16], characterized by S = 0.7784 m and
T = 0.7118 s.

Figure 6.5 shows the comparison between the large limit cycle gen-
erated using the controller (A.13) with γ(q1) as in (6.13) and a11(q) as
in (6.14) and the limit cycle obtained through CL method, where it is
visible that the area of the cycle limit obtained through CL is almost
totally contained by the area of limit cycle generated by the proposed
IDA-PBC approach.
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Figure 6.3: Event histories of the step length and the step period
during Case Study II (γ(q1) as in (6.2) and a11(q) as in (6.8)).
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Figure 6.4: Event histories of the step length and the step period
during Case Study II (γ(q1) as in (6.13) and a11(q) as in (6.14)).
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Figure 6.5: Limit cycles comparison during Case Study II. In red, the
limit cycle generated with the proposed IDA-PBC. In purple, the limit
cycle generated using CL. In black, the discontinuities occurring at
impacts. The arrows indicate the time evolution.

The proposed controller is robust to parametric uncertainties. It is
designed on the nominal values of the dynamic parameters, while the
ODE45 function simulating the system dynamics sees an increment
of 10% for the masses and the lengths of the CBR. A different, but
symmetric, gait is generated with the same gains which lead to T =
0.6806 s and S = 0.8738 m in nominal conditions. The event histories
of gait parameters, shown in Figure 6.6, testify the robustness of the
approach. Figure 6.7 shows that the gait is symmetric and that it
is very close to the gait obtained in case of perfect knowledge of the
dynamic parameters. Figure 6.8 represents the comparison between
the limit cycles associated respectively to the small gait (blue), the
passive gait (green), and the large gait (red), the former and the latter
generated with the controller (A.13) with γ(q1) as in (6.2) and a11(q)
as in (6.8). As a consequence of the designs proposed in Case Study I
and Case Study II, the small-gait limit cycle is enclosed by the passive
limit cycle, which is, in turn, contained by the large-gait limit cycle.
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Figure 6.6: Event histories of step length and step period during Case
Study II with a 10% uncertainty on both masses and lengths. In
blue, the gait without any parametric uncertainty with the proposed
IDA-PBC. In red, the same gait with uncertainty. The CBR with
parametric uncertainty results to be slower since it performs 41 steps
versus the 43 steps of the CBR without parametric uncertainty within
the same simulation time.
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Figure 6.7: Limit cycles comparison during Case Study II. In blue, the
gait generated with the proposed IDA-PBC, without any parametric
uncertainty. In red, the gait generated with the same controller, in
presence of parametric uncertainties.
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Figure 6.8: Limit cycles comparison. In green, the passive gait. In
blue, the Case Study I. In red, the Case Study II.
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6.6.3 Case Study III: Small Gait Generation via

SIDA-PBC with Dissipative Forces

In order to generate the small gait, the controller (A.21) is designed
as shown in Section 6.3 through the following set of gains k1 = −0.01,
k2 = −15, k3 = 0.92 experimentally tuned complying with C.1. The
simulation is carried out for 40 s. The obtained gait has a very small
step length S = 0.1312 m and a big step period T = 0.8639 s. The
event histories of S and T are depicted in Figure 6.9.

6.6.4 Case Study IV: Large Gait Generation via

SIDA-PBC with Dissipative Forces

In order to generate the large gait, the controller (A.21) is designed
as shown in Section 6.3 through the following set of gains k1 = −0.15,
k2 = 0, k3 = 0, experimentally tuned complying with C.1. The simula-
tion, as for Case Study III, lasts for 40 s. The obtained gait has a bigger
step length, S = 0.6084 m, and a smaller step period, T = 0.7144 s,
than the passive gait. The event histories of S and T are depicted
in Figure 6.10. The comparison of the obtained limit cycles in the
third and the fourth case studies with the passive gait is depicted in
Figure 6.11.
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Figure 6.9: Event histories of the step length and the step period
during Case Study III.
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Figure 6.10: Event histories of the step length and the step period
during a Case Study IV.
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Figure 6.11: Limit cycles comparison. In green, the passive gait. In
blue, the Case Study III. In red, the Case Study IV.

6.6.5 Case Study V: Small Gait Generation via

EPD-PBC

In order to generate the small gait, the controller (6.29) is designed as
shown in Section 6.4 with kpd = −30. The simulation is carried out for
40 s. The offset ζ has been experimentally tuned to π

24 rad, leading to
a controller which exhibits gaits that are comparable with the others
presented in this thesis. The obtained gait has a smaller step length,
S = 0.4899 m, and a bigger period, T = 0.7418 s, than the passive
one. The event histories of S and T are depicted in Figure 6.12.

6.6.6 Case Study VI: Large Gait Generation via

EPD-PBC

In order to generate the large gait, the controller (6.29) is designed
as shown in Section 6.4 with kpd = 30. The simulation, as for Case
Study V, lasts for 40 s. The offset ζ, as for Case Study V, has been
experimentally tuned to π

24 rad. The obtained gait has a bigger step
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Figure 6.12: Event histories of the step length and the step period
during Case Study V.

length, S = 0.5831 m, and a smaller step period, T = 0.7227 s, than the
passive one. The event histories of S and T are depicted in Figure 6.13.
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Figure 6.13: Event histories of the step length and the step period
during Case Study VI.

The comparison of the limit cycles obtained in the fifth and sixth case
studies with the passive gait is depicted in Figure 6.14.
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Figure 6.14: Limit cycles comparison. In green, the passive gait. In
blue, the Case Study V. In red, the Case Study VI.

6.6.7 Case Study VII: Small Gait Generation via

EPOD-PBC

In order to generate the small gait, the controller (6.30) is designed
as shown in Section 6.5 through the gain kpd = −280. The simulation
is carried out for 40 s. The obtained gait has a small step length
S = 0.4399 m and a large step period T = 0.7457 s. The event histories
of the step length S and the period T are depicted in Figure 6.15.

6.6.8 Case Study VIII: Large Gait Generation via

EPOD-PBC

In order to generate the large gait, the controller (6.30) is designed as
shown in Section 6.5 through the gain kpd = 160. The simulation, as
for Case Study VII, lasts for 40 s. The obtained gait has a bigger step
length, S = 0.6394 m, and a smaller step period, T = 0.7286 s, than
the passive gait. The event histories of the step length S and the step
period T are depicted in Figure 6.16. The limit cycles obtained in



Energy Shaping for Gait Generation 92

0.400

0.410

0.420

0.430

0.440

0.450

0.460

5 10 15 20 25 30 35 40 45 50

(a) Event history of S.

0.700

0.720

0.740

0.760

0.780

0.800

0.820

5 10 15 20 25 30 35 40 45 50

(b) Event history of T .

Figure 6.15: Event histories of the step length and the step period
during Case Study VII.

these two last examined case studies are compared with the passive
gait within Figure 6.17.
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Figure 6.16: Event histories of the step length and the step period
during Case Study VIII.
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Figure 6.17: Limit cycles comparison. In green, the passive gait. In
blue, the Case Study VII. In red, the Case Study VIII.

6.7 Performance Comparison

The comparisons depicted in Figure 6.8, Figure 6.11, Figure 6.14, and
Figure 6.17 between the limit cycles relative to all the case studies and
the passive gait, as well as the event histories of the parameters S and T
depicted in Figure 6.3, Figure 6.10, Figure 6.13, and Figure 6.16, show
that all the controllers are comparable with respect to the generation
of gaits larger than the passive one. For what concerns those methods
based on dissipative forces in particular, the EPOD can increase the
step length of the passive gait of ≈ 0.1 m (≈ +20%), versus the ≈
0.07 m (≈ +15%) of the SIDA-PBC, and the ≈ 0.05 m (≈ +10%) of
the EPD. The maximum period decrease among methodologies based
on dissipative forces is of ≈ 0.02 s (≈ −3%), obtained by employing the
SIDA-PBC. Performance of IDA-PBC are strongly influenced by the
choice of γ(q1) and a11(q), i.e., by the desired inertia matrix. IDA-PBC
increases the step length of the passive gait of ≈ 0.004 m (≈ +0.75%)
of with γ(q1) as in (6.2) and a11(q) as in (6.8) whereas designing γ(q1)
as in (6.13) and a11(q) as in (6.14) leads to an increase of ≈ 0.34 m
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(≈ +65%) which represents the biggest step increment achieved in the
numerical simulation carried out in the thesis. In the same time, IDA-
PBC with such a choice of γ(q1) and a11(q) leads to the maximum
period decrease experienced during simulations, which is of ≈ 0.05 s(≈
−7%).

On the other hand, the blue limit cycles in Figure 6.8, Figure 6.11,
Fig. 6.14, and Fig. 6.17 show that IDA-PBC is more effective in creat-
ing narrow limit cycles compared to the SIDA-PBC, EPOD-PBC, and
the EPD-PBC. This is certified by the event histories in Figure 6.2
which shows that the IDA-PBC can produce stable gaits with the
smallest step length, S = 0.0417 m (≈ −92% compared to the passive
step length), and the biggest time period, T = 1.149 s (≈ +100% com-
pared to the passive step period), than the others. Comparable results
are achievable using SIDA-PBC, which leads to a small limit cycle
with S = 0.1312 m (≈ −75% compared to the passive step length)
and T = 0.8639 s (≈ +20% compared to the passive step period).

Summarizing, all the methodologies proposed in this work can pro-
duce new gaits characterized by a simultaneous increment of S and
reduction of T or vice-versa, in the same biomimetic fashion as the ap-
proaches proposed in [16] and [49]. Total energy shaping has proved to
be worth being exploited to generate both large and small gaits, com-
pared to kinetic-energy shaping only methods. In particular, IDA-PBC
can go beyond CL in generating large gaits, as manifest in Figure 6.5.
Besides, comparing the results of this work with those achieved in [49],
where a partial IDA-PBC approach without potential energy shaping
is employed, emerges that adding the potential energy shaping stage
has beneficial effects in the generation of small gaits. The smallest
gait generated in [49], using IDA-PBC reduced to kinetic energy shap-
ing only, has S = 0.2012 m and T = 0.9996 s as parameters, while
the values exhibited by the total energy shaping, achieved using the
proposed version of IDA-PBC, are S = 0.0417 m and, T = 1.149 s.
Therefore, differently from the approaches presented in [16] and [49],
the former being more suitable to generate large gaits whereas the
latter being more appropriate to create small ones, the IDA-PBC pro-
posed in this thesis can be exploited indifferently to face both large
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and small gait generation, showing performance that surpasses past
methodologies. Furthermore, the stumbling block which usually pre-
vents standard IDA-PBC to be widely applied, that is, the solution
of PDEs, has been partially removed, thus extending the range of ap-
plicability of the proposed method. Moreover, if the sought goal is
to generate gaits spreading from very small to large ones, SIDA-PBC
with dissipative forces seems to represent a good alternative to IDA-
PBC, especially if compared to other control strategies based on the
exploitation of dissipative forces, such as EPD-PBC and EPOD-PBC.

The gait parameters arising from the application of the different
control policies deployed in this chapter have been collected in Ta-
ble 6.2 to help compare the performance of the total energy shaping
methodologies and the kinetic energy shaping ones available in the
literature.
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Table 6.2: Comparison between step length values (S) and step period
values (T) obtained carrying out simulations of the CBR model. In
green, no control action (passive gait). In blue, the total energy shaping
approaches proposed in this thesis (both small and large gait). In red,
the kinetic energy shaping methodologies referenced in this chapter [16]
(large gait), [49] (small gait).

controller passive gait small gait large gait
no S = 0.5347 m,T = 0.7347 s - -

IDA-PBC - S = 0.4871 m,T = 0.7854 s S = 0.5387 m,T = 0.7322 s
IDA-PBC - S = 0.0417 m,T = 1.1490 s S = 0.8738 m,T = 0.6806 s
SIDA-PBC - S = 0.1312 m,T = 0.8639 s S = 0.6084 m,T = 0.7144 s
EPD-PBC - S = 0.4899 m,T = 0.7418 s S = 0.5831 m,T = 0.7227 s

EPOD-PBC - S = 0.4399 m,T = 0.7457 s S = 0.6394 m,T = 0.7286 s
CL [16] - - S = 0.7784 m,T = 0.7118 s

IDA-PBC [49] - S = 0.2012 m,T = 0.9996 s -



Chapter 7

Energy Shaping for
Gait Robustification

Conservation of energy is the physical principle that motivates passive
dynamic walking [17, 53]. Consequently, a limit cycle can be regarded
as an energy-conserving orbit corresponding to a specific mechanical
energy value E∗ ∈ R [17, 22, 23, 47, 53]. One of the main drawbacks of
limit cycle walking is that find the correct set of initial conditions such
to trigger the limit cycle is hard. From an alternative point of view,
initial conditions related to a limit cycle are extremely sensitive to per-
turbations. The objective of this chapter is to provide a methodology
to extend the range of possible initial conditions leading to periodic
walking, i.e., to enlarge the basin of attraction of a given limit cycle.
As shown in [22], one possible approach is to build an output variable,
namely

e = E(x)− E∗, (7.1)

with E(x) ∈ R the energy of the system. Suppose that the system has
been written in the hybrid zero dynamics form, as in [22]. If the output
dynamics ė converge exponentially fast to zero, then, based on results
about HZD for planar bipeds [66, 67], the set of states such that e = 0
and ė = 0 constitute an hybrid invariant zero dynamics manifold. Such
states are those for which E(x) = E∗, hence the system has been ex-
ponentially stabilized at the energy level E∗ with the beneficial effects

98
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that its basin of attraction has been enlarged, as illustrated in [22].
To prove stability for the overall system, Poincaré maps are proposed
in [22]. One drawback of employing such a method is that it recasts sta-
bility analysis as a standard equilibrium stabilization problem, leading
to very conservative results, as explained in [24]. Conversely, it is more
useful to exploit the notion of stability of an invariant set, which is the
closed orbit associated with the periodic solution [24, 87]. Poincaré
maps require linearizing the system at the fixed point. Hence, they
only hold locally in a neighborhood of the point, in contrast with the
target of the paper that is the enlargement of the basin of attraction
of the periodic solution. In contrast, invariant-set theorems led to
global or almost-global stability results [88]. In the previous chapter,
EPD-PBC has been exploited to accomplish a gait generation task. In
the current chapter, EPD-PBC is designed to enlarge the basin of at-
traction of the gait exhibited by the CBR, going beyond the approach
presented in [22], in the sense that it yields less conservative stability
results based on invariant-set theory.

Remark. In order to ensure consistency with the other chapters of
this thesis, results in this chapter have been particularized for 2-DoF
mechanical systems. However, it should be noted that they can be easily
extended to systems with a number of DoFs greater than two.

7.1 EPD-PBC Design within HZD For-
mulation

As shown in [4], EPD-PBC can be adequately expressed to take into
account HZD formulation. To achieve gait robustification, differently
from Section 6.3, where the scalar e(x) is defined in order to comply
with (6.28), in this context e(x) is designed such that

e(x) =

{
e1(x) = 0 if x ∈ Z,
e2(x) 6= 0 if x ∈ R4 − Z.

(7.2)
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Besides, e(x) is selected as the output variable of the hybrid mechanical
system (3.18). From now on, the dependency on x in e is omitted to
shorten the notation. To enlarge the basin of attraction of the limit
cycle related to a certain gait, exponential stabilization to an invariant
level set of the total mechanical energy of the system has to be achieved.
Such a Hamiltonian value, namely H∗ ∈ R, is the one corresponding to
the limit cycle, constant due to the principle of conservation of energy.
Suppose that (3.18) already exhibits a stable periodic gait. The choice

e = H(x)−H∗, (7.3)

which is similar to (7.1), meets (7.2) and realizes the sought goal, that
is, e exponentially converge to zero implying that the system (3.18)
is stabilized at H∗ despite impacts, as it will be demonstrated in the
next sections.

The hybrid system (3.18) with control input given by (A.27) and
output variable (7.3) becomes

Σzd =


ẋ = f(x) + g(x)upd(x, e) (x, e) ∈ X\S,
ė = r(x) + w(x)upd(x, e) (x, e) ∈ X\S,
x+ = ∆(x−) (x−, e−) ∈ S,
e+ = ∆(e−) (x−, e−) ∈ S.

(7.4)

with f(x) = J(x)∇H(x), r(x) = ∇xH(x)TJ(x)∇xH(x), g(x) = G(x),
and w(x) = ∇xH(x)TG(x) which are assumed to be locally continuous
Lipschitz functions. Moreover, as consequence of (7.3), the sign of the
pumping-and-damping matrix Rpd(x) (A.26) changes accordingly to
the actual value of the Hamiltonian H(x) respect to the target value
H∗. Conversely, if kpd < 0, then the following condition

Rpd(x)e = Gp(q)kpdG
T
p (q)e2 ≤ 0, (7.5)

always holds true.
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7.2 Zero Dynamics Stability Analysis

The goal of this section is to show that, through (A.27), the zero
dynamics submanifold is both forward invariant and attractive, and
that the closed-loop system (7.4) is exponentially stable to it.

Firstly, assume that Z is the largest invariant set in the set

{x ∈ X|∇T
xH(x)Rpd(x)∇xH(x)e = 0}. (7.6)

To prove exponential stability of the closed-loop system respect to Z,
the storage function

V (e) =
1

2
e2 ≥ 0, (7.7)

positive everywhere except for e = 0, is selected. The output variable
e constitutes an isolated minimum for the storage function V (e) in the
zero dynamics submanifold Z, that is

∇eV (e)|x∈Z = e|x∈Z = 0,

∇2
eV (e)|x∈Z = 1 > 0.

(7.8)

Then, the time derivative of V (e) is

V̇ (e) =
∂V (e)

∂e
ė = eė, (7.9)

while the time derivative of the output dynamics is

ė = Ḣ(x)− Ḣ∗ = ∇xH(x)T ẋ =

= ∇xH(x)T (J(x) +Rpd(x))∇xH(x) =

= ∇xH(x)TRpd(x)∇xH(x) =

= ∇pH(x)TGp(q)kpdeG
T
p (q)∇pH(x)

= l(x)e,

(7.10)

where l(x) = ∇pH(x)TGp(q)kpdG
T
p (q)∇pH(x) ≤ 0 with kpd < 0. No-

tice that J(x) has been exploited to cancel out the related quadratic
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term. Substituting (7.10) into (7.9) yields

V̇ (e) = ∇pH(x)TGp(q)kpde
2GT

p (q)∇pH(x) =

= 2l(x)
1

2
e2 = 2l(x)V (e) ≤ 0.

(7.11)

Relation (7.11) with (7.8) proves the exponential stability of (7.4) with
respect to Z. Given (7.8), the following holds

∇THx(x)Rpd(x)∇Hx(x)e|x∈Z = 0. (7.12)

Attractivity of Z is proved applying LaSalle’s invariance principle, tak-
ing into account (7.11) and assumption (7.6).

To prove the forward invariance of Z, the restriction of the trans-
verse dynamics to the zero dynamics submanifold must be considered

ė|x∈Z = r(x)|x∈Z + w(x)upd(x, e)|x∈Z . (7.13)

Since e = 0 in Z, then upd(x, 0)|x∈Z = 0. Besides, since ė = Ḣ(x),

equation (7.13) can be rewritten as Ḣ(x)|x∈Z = r(x)|x∈Z . Since the
mechanical energy is constant during swing dynamics due to the ab-
sence of dissipation, then ė|Z = Ḣ(x)|Z = 0 holds, proving the forward
invariance of Z which, now, can be profitably defined as

Z = {x ∈ X|e = 0, ė = 0}. (7.14)

Finally, hybrid invariance is automatically achieved in (7.10), where
output dynamics convergence exponentially fast to Z, under the con-
trol law (A.27). Moreover, the exponential rate of convergence can be
adjusted by profitably tuning the gain kpd in l(x).

The benefits of such results are twofold.

1. Suppose that a limit cycle exists and it is a periodic solution of
the zero dynamics. In that case, if the related mechanical energy
belongs to the zero dynamics submanifold, its stability is auto-
matically guaranteed by using the stability theory of invariant
sets, rather than Poincaré map analysis [87].
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2. The stability of the closed-loop system restricted to the zero dy-
namics is the prerequisite to guarantee the stability of the closed-
loop system’s full-order dynamics.

7.3 Full Dynamics Stability Analysis

The results of the previous section hold only for the hybrid zero dynam-
ics and the associated submanifold. Once that exponential stability of
a periodic solution is guaranteed, and that such property is valid under
continuous and discrete dynamics, such a result must be transferred to
the full order system, i.e., system (7.4) not restricted to Z. Since (7.4)
meets the hypotheses outlined in [69], it is possible to conclude that
the exponential stability of a periodic orbit belonging to the hybrid
restriction dynamics implies the exponential stability of the same pe-
riodic orbit for the full-order system (for the detailed demonstration,
see [69]).In particular, the following conditions must be verified:

FS.1 for Z in (7.14), S ∩ Z is a (2n− 1) dimensional hybrid invariant
submanifold of Z;

FS.2 system (7.4) has a exponentially stable periodic orbitO contained
in Z, which is transverse to the reset map S;

FS.3 the storage function V (e) is positive definite locally around the
orbit O, it decreases during swing dynamics as showed in (7.11),
and its value is zero on the orbit;

FS.4 if the scalar e is measured right after any impact and it is de-
fined as ei, where i stands for the i − th impact event, then the
sequence of the storage functions V (ei), evaluated at every im-
pact, is decreasing.

The first condition is true because Z is a hybrid invariant submani-
fold. FS.2 and FS.3 above are satisfied if the energy value of a given
periodic orbit O, transverse to S by hypothesis, belongs to Z, as
demonstrated in (7.11). Finally, since an uncontrolled passive walker
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dissipates kinetic energy at every impact (supposed perfectly inelastic),
while mechanical energy is constant during swing dynamics, H(x) de-
creases to the passive value at every foot strike. When the biped is
controlled using upd(x) in (A.27) with e in (7.3), the only effect is in
the swing phase, where V (e) exponentially decreases to zero as pointed
out in (7.11). Hence, summing the dissipation during the continuous
dynamics, achieved via control, and the dissipation naturally taking
place at discrete events, the consequence is that V (ei) constitutes a
decreasing sequence of values.

7.4 Numerical Evaluation

The current section aims to demonstrate the effectiveness of the de-
signed controller for the CBR in enlarging the basin of attraction of
existing gaits. The nominal dynamic parameters chosen for the CBR
are mH = 10 kg, m = 5 kg, a = 0.5 m, b = 0.5 m, g = 9.8 m/s2, and
ϕ = 3 deg. The robot is underactuated with the control torque applied
only at the hip joint.

Two case studies will be analyzed in the following. The objective is
the robustification, with respect to perturbations on initial conditions,
of the limit cycle, related to an already exhibited gait, whether it is the
passive one or it has been generated via a preliminary energy-shaping
approach, like those presented in Sections 6.2, 6.3, 6.4, and 6.5, for
instances.

Tests are performed on a standard personal computer, using the
Matlab ODE45 routine together with the event detection option ac-
tive, to evaluate the hits between the swing foot and the ground. The
controller is implemented at a discrete-time step of 0.01 s. The sim-
ulations last 20 s. The average computation time of the controller is
≈ 0.12 ms with a standard deviation of ≈ 0.41 ms.
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7.4.1 Case Study I: Passive Gait Robustification

In the first case study, only the EPD-PBC is applied, without any en-
ergy shaping, to test the performance in terms of robustification of the
passive gait to perturbed initial conditions. Passive gait is exhibited
by the CBR without control, starting by the initial conditions

xP (0) =
[
0.2187,−0.3234,−1.0918,−0.3772

]T
,

where the first two are generalized coordinates whereas the last two
are generalized velocities, for the same reasons already explained in
Section 6.6 for gait generation. Passive gait parameters are known
to be SP = 0.5347 m, TP = 0.7347 s, HP = 153.0787 J for the
chosen CBR [23], where the last parameter is the constant value of the
Hamiltonian associated with the passive limit cycle.

EPD-PBC enlarges the basin of attraction of the passive gait. Firstly,
uniform perturbations on initial conditions have been considered. Three
distinct sets of perturbed initial conditions were obtained multiplying
x0P by 0.8 (small perturbation), 0.7 (medium perturbation), and 0.6
(large perturbation), respectively [22]. The control gain for each initial
condition has been experimentally tuned as kpd = −1, kpd = −10.2,
and kpd = −8.4, respectively.

Figure 7.1 shows the limit cycle in the phase plane of the controlled

CBR starting from 0.6xP (0) =
[
0.1312,−0.1940,−0.6551,−0.2263

]T
with kpd = −8.4. Both the part of the cycle related to the swing angle
(blue line) and the one associated with the stance angle (green line)
converge to the passive limit cycle (red line). The CBR recovers the
passive gait after a large perturbation on the initial state thanks to
EPD-PBC, which thus enlarges the basin of attraction of the passive
limit cycle. The periodic motion associated with the first leg, which is
the swing one at the beginning of the simulation, is depicted in Figure
7.2 (since the gait is symmetric, this figure holds for the other leg also,
though with a different initial condition).

Figure 7.3 shows the convergence of the storage function V (e) to
zero. At every impact, the value of V (e) is smaller than (or equal to)
the value of the same function at the previous foot strike. This gives an
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Figure 7.1: Limit cycle comparison during Case Study I. Red arcs rep-
resent the passive limit cycle. Green arc represents the component of
the limit cycles relative to q1, while blue arc represents the component
of the limit cycles relative to q2 during a test carried out starting by
perturbed initial conditions. Black dots represent initial conditions.
Both green and blue arcs converge to red ones using EPD-PBC with
kpd = −8.4.

experimental confirmation that the passivity of the switched systems
is the right hypothesis.

To further enlighten increment of robustness to initial conditions,
nonuniform perturbations have been taken into account (i.e., distinct
perturbations on every component of xP (0) were considered). Ten
further simulations have been carried out, each one starting from a
different initial condition xPi

(0) with i = 1, ..., 10 obtained multiply-
ing xP (0) by as many diagonal matrices whose elements have been
randomly computed to lie in the set {0.8, 0.7, 0.6}.

For the sake of comparison, the same initial conditions have been
used to test performances of the min-norm control (MNC) employed
in [22]. Results of simulations with EPD-PBC and MNC have been
collected in TABLE 7.1, where PG indicates the passive gait while
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Figure 7.2: Limit cycles comparison for the first leg during Case Study
I. Red arcs represent the passive limit cycle. Same legend and condition
of Fig. 7.1 hold.

NG indicates a new gait characterized by SN = 0.5351 m, TN =
0.7282 s, and HN = 153.12 J . Control gains have been firstly tuned
to face uniform disturbances. Then, they have been tested in all ten
simulations. Those reported in the table are the best ones for each
methodology (kmn = c/ε with c = 1 and ε = 0.5, see [22] for further
details).

By inspecting TABLE 7.1, it is clear that both methodologies in-
crease CBR robustness to initial conditions. EPD-PBC is more suit-
able to increase the basin of attraction of the passive limit cycle, com-
pared to MNC. The passive gait has been recovered in 4 out of 10
total trials, with kpd = −1. On the other hand, MNC never succeeds
to recover the passive limit cycle, as evident by the new gait created.
MNC cannot enlarge the basin of attraction of the passive limit cycle
for perturbations equal or greater than those considered in this paper.
Another crucial aspect is that EPD-PBC avoids robot falling as many
times as done by MNC. In conclusion, EPD-PBC exhibits the same
performances of MNC in increasing the overall robustness, but it is
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Figure 7.3: Storage function convergence during Case Study I. Storage
function converges to zero in a simulation carried out starting from
perturbed initial conditions using EPD-PBC with kpd = −8.4. As
highlighted by the box on the right, the value of the storage function
at every impact is less than (or equal to) the value at the previous
impact.

more effective in recovering the passive gait, as a possible consequence
of the almost global stability results obtained via invariant sets theory.

7.4.2 Case Study II: Generated Gait Robustifica-

tion

In this section, EPD-PBC has been applied after energy shaping. The
energy of the system has been shaped through the IDA-PBC procedure
proposed in [1] and presented, in this thesis, in Sections 4.2.1 and 6.2,
for what concerns the methodological procedure and the application to
the CBR, respectively. Energy-shaping is motivated by the possibility
to generate new gaits. As remarked in [53], the gait exhibited by a
CBR emerges from its particular inertial and geometrical properties.
If both inertia and geometry are fixed, as well as the slope of the incline,
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Table 7.1: Comparison between EPD-PBC and MNC during Case
Study I

xP (0)
EPD-PBC MNC

kpd = −1 kmn = 2

1 - -
2 PG NG
3 PG -
4 - -
5 - -
6 PG -
7 - NG
8 - NG
9 - -
10 PG NG

the energy flow between the walking surface and the robot is fixed too,
driving biped dynamics towards its passive limit cycle with energy HP .
As shown in [23], control approaches similar to EPD-PBC and MNC
fail in stabilizing target energies values which significantly differs from
HP (i.e., H∗ >> HP or H∗ << HP ). In some cases, the resulting
gait is exactly the passive one while, in others, new gaits arise, whose
energies are different. Then, to stabilize a desired H∗, it is necessary
to change how the robot and the ground interact, modifying both the
inertial and the geometrical properties of the biped. Therefore, its
kinetic and potential energies must be shaped.

A novel gait has been generated via an inner IDA-PBC control
loop. Since it is not required to add dissipation in this task, the
damping-injection step has been skipped. Hence, IDA-PBC has been
reduced to the energy shaping phase only. The obtained gait has
Sida = 0.5329 m and Tida = 0.7717 s as parameters, while its en-
ergy is Hida = 227.8194 J . Notice how this gait is significantly slower
than the passive one. Simulation has been performed starting from
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[
0.1959,−0.2902,−0.9576,−0.2700

]T
, which corresponds to a uniform

10% perturbation on the passive initial conditions

xida(0) =
[
0.2177,−0.3224,−1.0640,−0.3000

]T
,

without introducing the proposed EPD-PBC. The same procedure
adopted in Section 6.2 has been followed, appropriately adapted to
take into account the actuation at the hip instead of the ankle. The
CBR falls after few simulation seconds, showing that this novel limit
cycle has a very narrow basin of attraction.

Then, an outer EPD-PBC loop, with kpd = −0.7 andH∗ = 227.8194 J
has been implemented. As shown in Fig. 7.4, the limit cycle (blue line)
converges to the target one (green line) which partially surrounds the
passive one (red line) placed here as a reference. Thanks to the EPD-
PBC, the CBR keeps walking, demonstrating its usefulness to increase
the robustness of newly generated gaits.
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Figure 7.4: Limit cycles comparison for the first leg during Case Study
II. Red arcs represent the passive limit cycle without energy shaping.
Green arcs represent the gait generated through IDA-PBC starting
from nominal initial conditions. Blue arcs represent the same gait
starting from perturbed initial conditions. Black dot represents per-
turbed initial conditions. Blue arcs converge to green ones using EPD-
PBC with kpd = −1.



Chapter 8

Conclusion and Future
Research

In this thesis, the versatility of energy shaping to tackle different con-
trol problems concerning underactuated mechanical systems has been
highlighted. In particular, approaches belonging to the realm of IDA
methodologies, namely IDA-PBC, SIDA-PBC, EPD-PBC, and EPOD-
PBC have been deployed to achieve several control objectives: i) equi-
librium stabilization; ii) gait generation; iii) gait robustification.

Firstly, a constructive solution to deal with IDA-PBC for underac-
tuated two-degree-of-freedom mechanical systems has been presented.
The proposed strategy combines the attributes of the parameterized
IDA-PBC with those of the algebraic IDA-PBC: i) it provides explicit
solutions of the PDEs arising from the matching process without re-
quiring the a priori knowledge of the desired total energy; ii) the singu-
larity in the generalized momenta, usually appearing in the desired in-
terconnection matrix within state-of-the-art methodologies is avoided;
iii) it does not put any constraint on the structure of the original sys-
tem’s inertia matrix. For these reasons, the proposed methodology
overcomes the limitations inherent to both parameterized IDA-PBC
and algebraic IDA-PBC. It is indeed a useful tool in the control of
two-degree-of-freedom mechanical systems with underactuation degree
one. Such a methodology has been exploited to face both the equilib-
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rium stabilization of the TORA system and the gait generation of the
CBR, exhibiting performances that are comparable to or better than
other state-of-the-art approaches, as confirmed by numerical simula-
tions which have been carried out. Then, several control methodologies
using dissipative forces, as the SIDA-PBC, the EPD-PBC control, and
the EPOD-PBC, have been used to generate stable gaits for the CBR.
Due to the switching conditions produced by the impact of the swing
leg with the ground, it has been possible to generate a stable gait
in a CBR by relaxing the stability condition of the controllers men-
tioned in Appendix A. In particular, it has shown that the SIDA-PBC,
with the inclusion of dissipative forces, is efficient in the generation of
gaits not exhibited by the uncontrolled system, especially compared to
EPD-PBC and EPOD-PBC controllers. Both IDA-PBC and the ap-
proaches based on dissipative forces can generate both small and large
gaits, showing performance that justifies shaping the total energy of
the biped rather than the kinetic energy only, as done in [16] and [49],
instead. To tackle the gait robustification problem, a control design
using EPD-PBC with HZD has been exploited to enlarge the basin of
attraction of the passive limit cycle of the CBR, as well as, to enlarge
the basin of attraction of the gaits generated through energy shaping,
the latter created through IDA-PBC, further proving the flexibility
of IDA methodologies to tackle different control problems. Numeri-
cal simulations and comparisons with other techniques validated the
approach. Future work will focus on: i) generalizing the presented
approaches to systems with higher degrees of freedom than two and
higher underactuation degree than one; ii) extending the results and
the ideas concerning gait generation to more complex biped models,
from planar biped robots to 3D bipeds, i.e., systems not constrained
to move in the sagittal plane only; iii) investigating methods to guide
the parameter selection for gait generation in terms of step length and
step period specifications; iv) formalizing the presented results based
on IDA methodologies to stabilize the gaits (i.e., the orbital stabiliza-
tion problem), and not only to generate them; v) implementing such
methods on real hardware, with the proper adaptations to avoid foot
scuffing, as mentioned at the end of Section 3.2.4.



Appendix A

IDA Methodologies

In this Appendix, the basic concepts about IDA-PBC, SIDA-PBC,
EPD-PBC, and EPOD-PBC, are given. Such methodologies are re-
peatedly referred to as IDA methodologies, throughout the thesis. Such
a choice has been made to stress out that SIDA-PBC, EPD-PBC, and
EPOD-PBC, can be seen as a modification of IDA-PBC, which is the
progenitor of the methodologies based on interconnection and damping
assignment, having been the first to be proposed, in [9]. So, group-
ing together such different approaches paves the way to remark their
common origin, as well as, to enlighten their differences. In particular,
SIDA-PBC with dissipative forces represents a generalization of IDA-
PBC, because gyroscopic forces have been substituted by more general
dissipative ones [89] while the energy shaping and damping injection
are carried out simultaneously, rather than in separate steps [21]. Be-
sides, SIDA-PBC, EPD-PBC, and EPOD-PBC can be grouped in a
further subgroup, namely the group of methodologies based on dissi-
pative forces, since the control action is carried out only using such
kind of forces. All the approaches proposed in this work have been
exploited to control 2-DoFs mechanical systems, hence, the brief de-
scription outlined in this Appendix has been particularized for 2-DoFs
mechanical systems too, for the sake of consistency with the rest of the
thesis.
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A.1 IDA-PBC for Applications to 2-DoF
Mechanical Systems

This section is intended to give the preliminary concepts about the
IDA-PBC. The systems addressed in this thesis can be described using
(3.1), particularized for 2-DoF mechanical systems as[

q̇
ṗ

]
=

[
O2 I2

−I2 O2

] [
∇qH(q, p)
∇pH(q, p)

]
+

[
02

Gp

]
u(q, p), (A.1)

with q =
[
q1 q2

]T ∈ R2 the generalised coordinates vector, p =[
p1 p2

]T ∈ R2 the generalised momenta vector, Gp ∈ R2 the constant
input mapping port, and u(q, p) ∈ R the scalar control input.

The HamiltonianH(q, p) is expressed as in (3.2) , withM(q) ∈ R2×2

defined as

M(q) =

[
b11(q) b12(q)
b12(q) b22(q)

]
(A.2)

The IDA-PBC wants to bring the system (A.1) into the desired
closed-loop expression[

q̇
ṗ

]
=

[
O2 M−1(q)Md(q)

−Md(q)M
−1(q) J2(q, p)−GpkdG

T
p

] [
∇qHd(q, p)
∇pHd(q, p)

]
(A.3)

with

Jd(q, p) =

[
O2 M−1(q)Md(q)

−Md(q)M
−1(q) J2(q, p)

]
(A.4)

the desired, skew-symmetric interconnection matrix such that Jd(q, p) =
−Jd(q, p)T ∈ R4×4,

Rd =

[
O2 O2

O2 −GpkdG
T
p

]
(A.5)

the desired, positive semidefinite dissipation matrix such thatRd(q, p) ≥
0 ∈ R4×4, where kd > 0 ∈ R is a positive damping gain, and Hd(q, p) ∈
R is the desired Hamiltonian scalar function, i.e.

Hd(q, p) =
1

2
pTM−1

d (q)p+ Vd(q). (A.6)
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The following crucial conditions must be satisfied:

C.1 Md(q) ∈ R2×2 is the desired mass matrix which must be positive
definite (Md(q) > 0) and symmetric (Md(q) = Md(q)

T );

C.2 Vd(q) ∈ R is the desired potential energy scalar function which
must admit a minimum in the desired equilibrium q? = argminVd(q);

C.3 J2(q, p) ∈ R2×2 is the assigned interconnection matrix which must
be skew-symmetric (J2(q, p) = −J2(q, p)

T ).

Notice that, for mechanical systems, because of C.2, the desired equi-
librium point (q, p) = (q?, 02) corresponds to the minimum of the total
energy (q?, 02) = argmin Hd(q, p).

Problem Statement: Find a control-law matching the pH sys-
tem (A.1) with the desired closed-loop pH system (A.3), satisfying C.1,
C.2, and C.3.

Matching (A.1) with the target closed-loop (A.3) yields the follow-
ing set of PDEs (i.e., the matching equations)

G ⊥p
(
∇qH(q, p)−Md(q)M

−1(q)∇qHd(q, p) + J2(q, p)M
−1
d (q)p

)
= 0.

(A.7)

Defined G⊥p ∈ R1×2 as the left annihilator of Gp, the matching process,
as explained in Section 2.3, changes accordingly to the methodology
adopted. Notice that, in case of fully actuated systems, the PDEs (A.7)
are trivially satisfied since G⊥p is a null matrix. Therefore, the potential
and kinetic energies can be shaped as desired. In general, for fully
actuated system, only the potential energy is shaped to avoid nonlinear
cancellations, reducing the robustness of the closed loop.

The non-parameterized IDA-PBC fixes the structure of J2(q, p)
in (A.7), defining the family of admissibleHd(q, p) satisfying the match-
ing equations.

The algebraic IDA-PBC fixes the desired total energy Hd(q, p) ex-
actly. For mechanical systems, this means that Md(q) and Vd(q) are
previously defined. In this way, the matching equations (A.7) become
algebraic with J2(q, p) as unknown.
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The parameterized IDA-PBC fixes the structure of Hd(q, p). For
mechanical systems, this means that a parameterization of Md(q) and
Vd(q) is defined. This splits the matching equations (A.7) into two
subsets of PDEs, namely the KE-ME

G⊥p (∇q(p
TM−1(q)p)−Md(q)M

−1(q)∇q(p
TM−1

d (q)p)

+ 2J2(q, p)M
−1
d (q)p) = 0,

(A.8)

and the PE-ME

G⊥p (∇qV (q)−Md(q)M
−1(q)∇qVd(q)) = 0. (A.9)

Both the KE-ME and the PE-ME are solved with respect to the cho-
sen parameterization for Md(q) and Vd(q), which in turn gives some
constraints on J2(q, p) as clear from (A.8).

Regardless of the chosen approach, at the end of the matching
process, the terms Vd(q), Md(q), and J2(q, p) are known. Hence, the
energy-shaping control law can be computed as

(A.10)ues(q, p) = (GT
pGp)

−1GT
p (∇qH(q, p)−Md(q)M

−1(q)∇qHd(q, p)

+ J2(q, p)M
−1
d (q)p),

which defines a strict minimizer of the potential energy in the desired
equilibrium (q, p) = (q?, 02). Moreover, a damping injection term

udi(q, p) = −kdGT
p∇pHd(q, p) (A.11)

guarantees the asymptotic stability of the desired equilibrium if the
passive output

yd(q, p) = GT
p∇pHd(q, p) = GT

pM
−1
d (q)p (A.12)

is detectable (see Remark 3.2.21 in [83]). The final control law is thus

u(q, p) = ues(q, p) + udi(q, p). (A.13)

For more details see [63].
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A.2 SIDA-PBC with Dissipative Forces
for Applications to 2-DoF Mechan-
ical Systems

In IDA-PBC, gyroscopic forces included in the desired dynamics sim-
plify the solution of the KE-ME. Such kind of forces translates into
the presence of the free skew-symmetric matrix J2(q, p) in the match-
ing equations. As a consequence, the number of PDEs to be solved is
reduced. Such free skew-symmetric term is intrinsic in IDA-PBC, due
to its pH formulation, while it was added to the CL method for the
first time in [90], where it is shown that the PDEs of the CL method
extended with gyroscopic forces and those of IDA-PBC are the same,
and later exploited in [91].

As shown in [21], SIDA-PBC with Dissipative Forces assigns a tar-
get pH system with a more general structure than the one considered
in IDA-PBC, i.e.[
q̇
ṗ

]
=

[
02 M−1(q)Md(q)

−Md(q)M
−1(q) 02

] [
∇qHd(q, p)
∇pHd(q, p)

]
+

[
0

C(q, p)

]
,

(A.14)
where the function C(q, p) ∈ R2 represents a mapping to be defined
which is referred to as dissipative forces in [21]. Such kind of forces,
whose adoption was originally proposed in [89], are more general than
the usual gyroscopic ones represented, in standard IDA-PBC, by the
skew-symmetric matrix J2(q, p). Hence, dissipative forces, though they
do not reduce the complexity of the PDEs [10], extend the realm of
application of IDA-PBC to a wider class of systems [21].

Substituting gyroscopic forces with dissipative ones, the KE-ME
(A.8) becomes

G ⊥p
(
∇q

(
pTM−1(q)p

)
−Md(q)M

−1(q)∇q

(
pTM−1

d (q)p
)

+2C(q, p)
)

= 0,

(A.15)

while the PE-ME (A.9) remains unchanged.
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Since C(q, 0) = 0n, the related mapping can be expressed as

C(q, p) = Λ(q, p)M−1
d (q)p (A.16)

for a matrix Λ(q, p) ∈ R2×2 defined as

Λ(q, p) :=

[
Λ11(q, p) Λ12(q, p)
Λ21(q, p) Λ22(q, p)

]
, (A.17)

with Λij(q, p) ∈ R. The mapping C(q, p) must be quadratic in p and
thus, without loss of generality, it can be written as

2C(q, p) =
2∑
i=1

(
pTM−1

d (q)QiM
−1
d (q)p

)
ei, (A.18)

with Qi ∈ R2×2 free matrices to be chosen and ei ∈ R2 the Euclidean
basis vector.

Therefore, the desired closed-loop dynamics can be written as[
q̇
ṗ

]
=

[
02 M−1(q)Md(q)

−Md(q)M
−1(q) Λ(q, p)

] [
∇qHd(q, p)
∇pHd(q, p)

]
. (A.19)

A necessary condition for stability of the equilibrium point of the
closed-loop system is

pTM−1
d (q)Λ(q, p)M−1

d (q)p ≤ 0. (A.20)

Once the matching equations (A.15) and (A.9) are solved, then the
control input can be algebraically computed as

(A.21)u(q, p) =
(
GT
pGp

)−1
GT
p

[
∇qH(q, p)−Md(q)M

−1(q)∇qHd(q, p)

+ Λ(q, p)M−1
d (q)p

]
.

which replaces the standard IDA-PBC controller (A.13) and carries
out energy shaping and damping injection simultaneously.
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A.3 EPD-PBC for Applications to 2-DoF
Mechanical Systems

A shown in Appendix A.1, within the IDA-PBC methodology, there
exist two distinctive control actions which are, contrarily to the SIDA-
PBC, carried out in two consecutive steps, namely, the energy shaping
ues(q, p) and the damping injection udi(q, p).

If the energy shaping stage is ignored, i.e. Hd(q, p) = H(q, p) and
J2(q, p) = 0, the IDA-PBC reduces to a controller which only dissipates
the initial energy of the system. Then, the resulting control law comes
out to be

u(q, p) = udi(q, p) = −kdGT
p∇pH(q, p), (A.22)

while the closed-loop system (A.3) becomes[
q̇
ṗ

]
=

[
02 I2

−I2 Rd(q)

] [
∇qH(q, p)
∇pH(q, p)

]
, (A.23)

which asymptotically converges to its natural equilibrium, given that
the passive output is detectable, due to the dissipation condition

Rd ≤ 0, (A.24)

where
Rd = −GpkdG

T
p . (A.25)

with kd ≥ 0. An alternative to (A.25) is

Rpd = Gpkpde(q, p)G
T
p . (A.26)

which relaxes the classical dissipation condition (A.24). Rpd is positive
definite in some regions of the state space while, in other regions, it is
negative semidefinite, leading to a control action which pumps energy
into the system and damps energy from the system accordingly to the
sign of Rpd. The pumping-and-damping matrix (A.26) yields to an
EPD-PBC with the following structure

(A.27)upd(q, p) = kpde(q, p)G
T
p∇pH(q, p)

= kpde(q, p)G
T
pM

−1(q)p,
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with kpd ∈ R a given control gain and e(q, p) a suitable scalar function
which will be chosen accordingly to the selected control objective (e.g.,
gait generation or gait robustification). Through such a control law,
the time derivative of the total energy H(q, p) becomes

Ḣ(q, p) = pTM−1(q)Gpkpde(q, p)G
T
pM

−1(q)p, (A.28)

whose sign changes accordingly with the sign of the function e(q, p).
The same methodology was proposed by [92] to stabilize a pendu-

lum in its upright position.

A.4 EPOD-PBC

The control methodology presented in the previous section can be
slightly modified by designing a function e(q, p) such to be always pos-
itive. Albeit such a choice does not lead to an EPD-PBC controller,
it brings to a control law that is different from the standard damping
injection term of the IDA-PBC because of the dependency on the gen-
eralized coordinate vector introduced by e(q, p). It is indeed equivalent
to an energy damping controller, dissipating energy for kpd < 0. On
the other hand, it reduces to an energy pumping controller for kpd > 0.
The upod(q, p) term assumes the role of a dissipative force for kpd < 0.



Appendix B

Existence of the
Integrals

B.1 Existence of the integral within equa-
tion (4.11)

To guarantee a closed-form solution for the integral in (4.11), from
the fundamental theorem of calculus, it is necessary to show that the
integrand is an integrable function. Since the continuity implies the
integrability, in the Riemann sense, to accomplish the task, it is suffi-
cient to show that the argument of the integral is a continuous function
over the set

[
1 q1

]
. The integrand of (4.11) is a fractional function.

Notice that the quotient of two continuous functions is continuous if
the denominator is not equal to zero. The numerator is the gradient of
the plant’s potential energy. Therefore, it is a conservative force that
is continuous everywhere by definition (V (q) is a class C2 function due
to its relationship with the Hamiltonian). Regarding the continuity
of the denominator, specific conditions will be expressed in the next
subsection. As a matter of fact, the integrand’s continuity in (4.11) is
strongly related to the integrand’s continuity in (4.17).
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B.2 Existence of the integral within equa-
tion (4.17)

Starting from the considerations provided in the previous subsection,
the integrand of (4.17) is a fractional function too. The numerator
and the denominator are continuous because they are a linear combi-
nation of the plant’s inertia matrix terms and their gradients. Hence,
the continuity of the integrand reduces to avoid that the denominator
becomes zero, as given by the following condition

k1b12

([
σ f4(q, σ)

])
+ k2b22

([
σ f4(q, σ)

])
6= 0,

which yields to

k2 6= −
k1b12

([
σ f4(q, σ)

])
b22

([
σ f4(q, σ)

]) . (B.1)

It is thus necessary to find upper and lower bounds for k2 to sat-
isfy (B.1). This is equivalent to compute the bounds for b12(q1, q2) and
b22(q1, q2). Such bounds exist if and only if M(q) is bounded too. A
study about the boundedness of the inertia matrix of serial robot ma-
nipulators was carried out in [93]. At the same time, several examples
are provided for many underactuated 2-DoF mechanical systems (the
Acrobot, the Pendubot, the cart-pole, the crane, the rotating pendu-
lum, the inertia-wheel pendulum, the magnetic suspension, the ball-
and-beam, and the TORA) [70], that are precisely the target of this
thesis (where the CBR is added to the list, and others can be found in
the literature). Moving from this assumption, it is possible to always
satisfy (B.1) through the following (very) conservative condition

k2 >

∣∣∣∣∣k1 max(b12

([
σ f4(q, σ)

])
)

min(b22

([
σ f4(q, σ)

])
)

∣∣∣∣∣, (B.2)

where the given bounds exist due to the boundedness of M(q). Hence,
the integral in (4.17) exists and it is well-defined. In turn, this yields
to the existence of the integral in (4.11). As a matter of fact, f2(q, c1)
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in (4.17) cannot be zero since it is an exponential continuous function.
Therefore, the function γ(q, c1) in (4.16) cannot be zero since f3(·, ·) is
a nonzero continuous function. Since the product of a finite number
of continuous functions is still a continuous function, and since γ(q, c1)
cannot be zero, the denominator in (4.11) is a nonzero continuous
function. This yields to the existence of the integral in (4.11).
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