
Lesson 3: Starting with ROS

programming (Part 1)

Jonathan Cacace

jonathan.cacace@unina.it

PRISMA Lab

Department of Electrical Engineering and Information Technology

University of Naples Federico II

www.prisma.unina.it

Jonathan Cacace 18 March 2020 1

OUTLINE

In this lesson we will develop ROS nodes to test the plumbing
(and communication) capabilities of ROS:

Publisher/Subscriber example

ROS Service example

Jonathan Cacace 18 March 2020 2

Installing ROS

ROS can be installed using APT tool:

By default, ROS software is not present in the APT stack

Configure APT to accept software from additional
repositories

Jonathan Cacace 18 March 2020 3

Installing ROS

ROS can be installed using APT tool:

By default, ROS software is not present in the APT stack

Configure APT to accept software from additional
repositories

Update your sources.list.d in the /etc1/apt/ folder

Update your APT repository

Install one of the available ROS versions

http://wiki.ros.org/melodic/Installation/Ubuntu

Jonathan Cacace 18 March 2020 4

Environment Configuration

Load the setup file included in the installation directory of ROS.

$ source /opt/ros/melodic/setup.bash

For example you can use the roscd command to move in your
ROS workspace

$ roscd

$ pwd

$ /opt/ros/melodic

Jonathan Cacace 18 March 2020 5

Environment Configuration

Load the setup file included in the installation directory of ROS.

$ source /opt/ros/melodic/setup.bash

This directory is owned by the super user so you should create
your own workspace in the user space:

$ cd ~

$ mkdir -p ros_ws/src

$ cd ros_ws/src

$ catkin_init_workspace

$ cd ..

$ catkin_make

Jonathan Cacace 18 March 2020 6

Environment Configuration

catkin_make: compilation command

Must be ran in the root of your ROS workspace
This command compile the whole workspace (all the
packages contained into the ROS workspace)

The workspace contains three directories:

src directory you must create or download new ROS
packages. If a package is not placed there, it will not be
compiled
build directory instead contains the compilation file
devel folder contains the compiled libraries

Jonathan Cacace 18 March 2020 7

Environment Configuration

This workspace must be your default workspace!

roscd command must bring you in the workspace just
created

If you type roscd command now, you will be moved in the
/opt/ros/VERSION/ directory (in the super user space)

You need to source the setup.bash file contained in the
devel folder.

$ echo "source ~/ros_ws/devel/setup.bash" >>

~/.bashrc

Open a new terminal or source the modified bashrc file
load the new configuration. Test it with the roscd
command.

Jonathan Cacace 18 March 2020 8

ROS Package

Create a ROS package:

A ROS package could contain different executable (ROS
nodes)

$ catkin_create_pkg package_name [dep1] ... [depN]

Packages must be placed in the src directory of ROS
workspace, otherwise they will not be compiled!!

Jonathan Cacace 18 March 2020 9

ROS Package

The shape of a ROS package is a directory with the following
sub-directories:

Jonathan Cacace 18 March 2020 10

Example 1: pub/sub

Create a ROS package with two nodes, a publisher and a
subscriber:

$ catkin_create_pkg ros_topic roscpp std_msgs

roscpp: C++ implementation of ROS. It provides APIs to
C++ developers to make ROS nodes
std_msgs: standard ROS messages (int, string, array, . . .)

Navigate the new package:

$ roscd ros_topic

Create a new package:

$ touch src/ros_publisher.cpp

Goal: Publish an integer value on a topic called /numbers.

Jonathan Cacace 18 March 2020 11

Example 1: pub/sub

1 #include " ro s/ r o s . h "

2 #include " std msgs/ In t32 .h "

3 #include <iostream>

Jonathan Cacace 18 March 2020 12

Example 1: pub/sub

1 int main (int argc , char ∗∗argv) {

2 ro s : : i n i t (argc , argv , " r o s t o p i c p ub l i s h e r ") ;

3 ro s : : NodeHandle nh ;

4 ro s : : Pub l i sher top ic pub =

5 nh.advert i se< s td msgs : : Int32>("/numbers " , 10) ;

Jonathan Cacace 18 March 2020 13

ROS messages

ROS communication relies on a set of standard and custom
data structures called ROS messages

The types of data are described using a simplified message
description language called ROS messages

The message definition consists in a typical data structure
composed by two main types: fields and constants

Jonathan Cacace 18 March 2020 14

ROS messages

geometry_msgs::PoseStamped is used to share the pose of an
object:

1 std msgs/Header header

2 uint32 seq

3 time stamp

4 s t r i n g f rame id

5 geometry msgs/Pose pose

6 geometry msgs/Point po s i t i o n

7 f l o a t 6 4 x

8 f l o a t 6 4 y

9 f l o a t 6 4 z

10 geometry msgs/Quaternion o r i e n t a t i o n

11 f l o a t 6 4 x

12 f l o a t 6 4 y

13 f l o a t 6 4 z

14 f l o a t 6 4 w

Jonathan Cacace 18 March 2020 15

Example 1: pub/sub

The inbuilt tools called rosmsg is used to get information about
ROS messages. Here are some parameters used along with
rosmsg:

$ rosmsg show [message]

$ rosmsg list

$ rosmsg md5 [message]

$ rosmsg package [package_name]

Jonathan Cacace 18 March 2020 16

Example 1: pub/sub

1 ro s : : Rate ra t e (10) ;

2 int count = 0 ;

3 while (ros : : ok ()) {

4 std msgs : : Int32 msg ;

5 msg.data = count++;

Jonathan Cacace 18 March 2020 17

Example 1: pub/sub

1 ROS INFO("%d" , msg.data) ;

2 t op i c pub .pub l i s h (msg) ;

3 r a t e . s l e e p () ;

4 }

5 return 0 ;

6 }

Jonathan Cacace 18 March 2020 18

Example 1: pub/sub

To compile this package you must edit the
CMakeLists.txt file

You must specify the source files that must be compiled
and its dependencies

1 add executab le (t o p i c pub l i s h e r s r c/ r o s pub l i s h e r . c pp)

2 t a r g e t l i n k l i b r a r i e s (t o p i c pub l i s h e r ${catkin LIBRARIES })

Build ros_topic package as follows:

$ cd ~/ros_ws

$ catkin_make

Jonathan Cacace 18 March 2020 19

catkin make

catkin_make compiles all the package in your workspace.

Compilation errors cause the failing of the compilation of
all packages

To compile only one package you can use the
DCATKIN_WHITELIST_PACKAGES argument. With this
option, it is possible to set one or more packages enabled to
be compiled.

$ catkin_make -DCATKIN_WHITELIST_PACKAGES="pkg1,pkg2,..."

It is necessary to revert this configuration to compile other
packages not specified in the WHITELIST.

$ catkin_make -DCATKIN_WHITELIST_PACKAGES=""

Jonathan Cacace 18 March 2020 20

Run pub node

Activate a roscore in your system

$ roscore

Run the publisher node

$ rosrun ros_topic topic_publisher

The output on the linux shell shows the INFO about the integer
that are going to be published on /numbers topic. We can use
two additionally commands to debug and understand the
working of the nodes: rosnode and rostopic.

Jonathan Cacace 18 March 2020 21

rosnode command

$ rosnode info [node_name]

$ rosnode kill [node_name]

$ rosnode list

For example, rosnode info /ros_topic_publisher will
provide information about the published and subscribed topics:

Node [/ros_topic_publisher]

Publications:

* /numbers [std_msgs/Int32]

* /rosout [rosgraph_msgs/Log]

Subscriptions: None

This is useful to understand the I/O of a node.

Jonathan Cacace 18 March 2020 22

rostopic command

$ rostopic list

$ rostopic echo /topic

$ rostopic hz /topic

$ rostopic info /topic

$ rostopic pub /topic message_type args

$ rostopic type /topic

Using rostopic command you can check which kind of topics
are published by the node:

$ rostopic list

Output:

/numbers

/rosout

/rosout_agg

Jonathan Cacace 18 March 2020 23

rostopic command

And check its content:

$ rostopic echo /numbers

Output:

data: 609

data: 610

data: 611

Jonathan Cacace 18 March 2020 24

Example 1: pub/sub

Create a ROS package with two nodes, a publisher and a
subscriber

Goal: Subscribe to the /numbers topic and print out its
contents

$ roscd ros_topic/src

$ touch ros_subscriber.cpp

We will implement a new C++ class called ROS_SUB.

Multiple functions can easily share information get by topics

Jonathan Cacace 18 March 2020 25

Example 1: pub/sub

1 #include " ro s/ r o s . h "

2 #include " std msgs/ In t32 .h "

3 #include <iostream>

Jonathan Cacace 18 March 2020 26

Example 1: pub/sub

1 c l a s s ROS SUB {

2 pub l i c :

3 ROS SUB() ;

4 void t op i c cb (std msgs : : Int32ConstPtr data) ;

5

6 pr i va t e :

7 ro s : : NodeHandle nh ;

8 ro s : : Subsc r ibe r t op i c s ub ;

9 } ;

Jonathan Cacace 18 March 2020 27

Example 1: pub/sub

1 ROS SUB : : ROS SUB() {

2 t op i c s ub = nh . sub s c r i b e ("/numbers " , 0 , &ROS SUB : : top i c cb , t h i s
) ;

3

4 }

subscribe function is part of the ros::NodeHandle class.

No class function:
1 sub s c r i b e (s t r i n g topic name , int queue , void∗

f u n c t i o n c a l l b a c k)

Class function:
1 sub s c r i b e (s t r i n g topic name , int queue , void (T : : ∗) (M)

ca l l ba ck funct ion , T ∗ obj)

inside a member function we can used the this pointer to
refer to the invoking object.

Jonathan Cacace 18 March 2020 28

Example 1: pub/sub

1 void ROS SUB : : t op i c cb (std msgs : : Int32ConstPtr data) {

2 ROS INFO(" L i s t en e r : %d" , data .data) ;

3 }

What is a Int32ConstPtr??

1 melodic/ i n c lude/ std msgs/ In t32 .h :

2 typedef boost : : shared ptr< : : std msgs : : Int32 const> Int32ConstPtr ;

Jonathan Cacace 18 March 2020 29

Example 1: pub/sub

1 int main (int argc , char∗∗ argv) {

2 ro s : : i n i t (argc , argv , " r o s s u b s c r i b e r ") ;

3 ROS SUB rs ;

4 ro s : : sp in () ;

5 return 0 ;

6 }

Jonathan Cacace 18 March 2020 30

Example 1: pub/sub

Modify the CMakeLists.txt file to add this new node
(executable) and compile it with the catkin_make
command

$ roscore

$ rosrun ros_topic topic_publisher

$ rosrun ros_topic topic_subsciber

Jonathan Cacace 18 March 2020 31

Example 1: pub/sub

rostopic info /numbers

Output:

Type: std_msgs/Int32

Publishers:

* /ros_topic_publisher

(http://jcacace-Inspiron-7570:41703/)

Subscribers:

* /ros_subscriber

(http://jcacace-Inspiron-7570:34901/)

Jonathan Cacace 18 March 2020 32

Example 1: pub/sub

Sometimes you just need to publish some data used to test
a subscriber node

Implement a ROS node from scratch could be a waste of
time

use rostopic pub

$ rostopic pub /numbers std_msgs::Int32

"data: 13" -r 10

This command publishes the number 13 on the topic numbers
with a publishing rate of 10 Hz.

Jonathan Cacace 18 March 2020 33

rqt

rqt is a software framework that implements the various
GUI tools as plugins

To start rqt just type this command in your linux shell:

$ rqt

Jonathan Cacace 18 March 2020 34

rqt

In the rqt start window you can load any desired plugin
present in your system.

You can also add custom plugins.

Topic monitor:

Jonathan Cacace 18 March 2020 35

rqt

In the rqt start window you can load any desired plugin
present in your system.

You can also add custom plugins.

Topic publisher:

Notice that the same plugin can be launched directly from
Linux shell:

$ rosrun rqt_publisher rqt_publisher

Jonathan Cacace 18 March 2020 36

Example 2: ROS Service

Create a ROS package with two nodes, a service server and
a service client

Goal: client node have to send a string to the server. The
server must reply with a string

ROS services doesn’t rely on standard (already
implemented) messages.

We must implement our service message

$ roscd && cd ..

$ cd src

$ catkin_create_pkg ros_service roscpp std_msgs

message_generation message_runtime

message_generation and message_runtime packages are
used to handle the building and run-time usage of custom
messages.

Jonathan Cacace 18 March 2020 37

Example 2: ROS Service

Create a new folder called srv in the package directory and
add a srv file called service.srv

string in

string out

Compile the message!

Generate services in the ’srv’ folder

add_service_files(

FILES

service.srv

)

generate_messages(

DEPENDENCIES

std_msgs

)

Jonathan Cacace 18 March 2020 38

Example 2: ROS Service

After compiled with catkin_make we can verify that
everything works properly:

$ rossrv show ros_service/service

If we see the same content as we defined in the file, we can
confirm it’s working.

Crate the source for client and server

$ roscd ros_service/src

$ touch service_server.cpp

Jonathan Cacace 18 March 2020 39

Example 2: ROS Service

1 #include " ro s/ r o s . h "

2 #include " r o s s e r v i c e / s e r v i c e . h "

3 #include <iostream>

4 #include <sstream>

5

6 us ing namespace std ;

Jonathan Cacace 18 March 2020 40

Example 2: ROS Service

1 bool s e r v i c e c a l l b a c k

2 (r o s s e r v i c e : : s e r v i c e : : Request &req , r o s s e r v i c e : : s e r v i c e : : Response &
r e s) {

3

4 std : : s t r ing s t r eam ss ;

5 s s << "Received Here " ;

6 r e s . o u t = s s . s t r () ;

7 ROS INFO("From Cl i ent [%s] , Server says

8 [%s] " , r e q . i n . c s t r () , r e s . o u t . c s t r ()) ;

9 return t rue ;

10

11 }

Jonathan Cacace 18 March 2020 41

Example 2: ROS Service

1 int main (int argc , char ∗∗argv) {

2 ro s : : i n i t (argc , argv , " s e r v i c e s e r v e r ") ;

3 ro s : : NodeHandle n ;

4 ro s : : S e rv i c eSe rve r s e r v i c e = n . a dv e r t i s e S e r v i c e (" s e r v i c e " ,
s e r v i c e c a l l b a c k) ;

5 ROS INFO("Ready to r e c e i v e from c l i e n t . ") ;

6 ro s : : sp in () ;

7 return 0 ;

8 }

Jonathan Cacace 18 March 2020 42

Example 2: ROS Service

Compile and run it!

Check that the service instantiated in this node is active

$ rosservice list

Output:

/rosout/get_loggers

/rosout/set_logger_level

/service

/service_server/get_loggers

/service_server/set_logger_level

You can also call this service using the following command:

$ rosservice call /service "in_: ’Call’"

out: "Received Here"

Jonathan Cacace 18 March 2020 43

Example 2: ROS Service

Create the client node

$ roscd ros_service/src

$ touch service_client.cpp

1 #inc lude " ro s/ r o s . h "

2 #inc lude <iostream>

3 #inc lude " r o s s e r v i c e / s e r v i c e . h "

4 #inc lude <iostream>

5 #inc lude <sstream>

6

7 us ing namespace std ;

Jonathan Cacace 18 March 2020 44

Example 2: ROS Service

1 int main (int argc , char ∗∗argv) {

2 ro s : : i n i t (argc , argv , " s e r v i c e c l i e n t ") ;

3 ro s : : NodeHandle n ;

4 ro s : : Rate l o op r a t e (10) ;

5 ro s : : S e r v i c eC l i e n t c l i e n t =

6 n . s e r v i c eC l i e n t< r o s s e r v i c e : : s e r v i c e >(" s e r v i c e ") ;

Jonathan Cacace 18 March 2020 45

Example 2: ROS Service

1 while (ros : : ok ()) {

2 r o s s e r v i c e : : s e r v i c e srv ;

3 std : : s t r ing s t r eam ss ;

4 s s << " Sending from Here " ;

5 s r v . r e q u e s t . i n = s s . s t r () ;

Jonathan Cacace 18 March 2020 46

Example 2: ROS Service

1 i f (c l i e n t . c a l l (s rv)) {

2 cout << "From Cl i ent :

3 ["<< s r v . r e q u e s t . i n << "] ,

4 Server says [" <<

5 s r v . r e s p on s e . o u t << "] " << endl ;

6 }

7 else {

8 ROS ERROR(" Fai l ed to c a l l s e r v i c e ") ;

9 return 1 ;

10 }

11 ro s : : spinOnce () ;

12 l o o p r a t e . s l e e p () ;

13 }

14 return 0 ;

15 }

Jonathan Cacace 18 March 2020 47

Example 2: ROS Service

You can test the service connection running the server and later
the client:

$ roscore

$ rosrun ros_service service_server

$ rosrun ros_service service_client

Additional commands to handle ROS service are reported in
the following:

$ rosservice type /service: This will print the

message type of /service

$ rosservice info /service: This will print the

information of /service

Jonathan Cacace 18 March 2020 48

Create custom messages

ROS already provides a comprehensive set of messages for
robotic programming

In some situation could be useful to define your own ROS
messages.

ROS message definitions are stored in a .msg file in the msg
folder of your package.

$ roscd ros_topic

$ mkdir msg && cd msg

$ touch demo.msg

1 s t r i n g name

2 i n t32 data

Jonathan Cacace 18 March 2020 49

Create custom messages

When the package has been created custom messages were
not considered

Manually add the message_generation dependency in the
CMakeLists.txt.

find_package(catkin REQUIRED COMPONENTS

roscpp

std_msgs

message_generation

)

Jonathan Cacace 18 March 2020 50

Create custom messages

Uncomment the following line and add the custom message
file:

1 add me s s a g e f i l e s (

2 FILES

3 demo.msg

4)

5 generate messages (

6 DEPENDENCIES

7 std msgs

8)

As usual, to use the added message, you have to compile
the ros_topic package

Jonathan Cacace 18 March 2020 51

Exercise 1

Parrot package: develop a ROS package with a publisher
and a subscriber. The publisher node accepts as input
string or characters using the keyboard and publish such
data on a ROS topic. The subscriber prints out the
published data.

Test publisher and subscriber also using rqt and command
line ROS commands.

Jonathan Cacace 18 March 2020 52

Exercise 2

Fibonacci Service: The Fibonacci Sequence is the series of
numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, The
next number is found by adding up the two numbers before
it. Develop a ROS Service taking 2 numbers (index,
length) as input and returning a portion of the fibonacci
sequence:

The first argument of the service represents the index of an
element along the fibonacci sequence:

f[0] = 0, f[1] = 1, f[2] = 1, f[3] = 2, ...

The second argument represent the number of element to
return

Starting from the index element of the sequence, return
the next length element of the sequence.

Jonathan Cacace 18 March 2020 53

Exercise 2

Fibonacci Service: The Fibonacci Sequence is the series of
numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, The
next number is found by adding up the two numbers before
it. Develop a ROS Service taking 2 numbers (index,
length) as input and returning a portion of the fibonacci
sequence:

Example:

Input: (8, 3), Output: 21, 34, 55

f[8] = 21, f[7] = 13 -> f[9] = 21+13 = 34

Jonathan Cacace 18 March 2020 54

Exercise 3

Adder package: develop a ROS package that adds and
publishes two random numbers.

Node1: in an infinite loop generates two random float
numbers and publishes them on a Topic using a custom
message
Node2: subscribes to the topic of Node1, sums the two
numbers and republishes the result on another topic using
custom message with three field:

Field 1: first random number

Field 2: second random number

Field 3: result of the sum

Jonathan Cacace 18 March 2020 55

Exercise

Try to use Object oriented programming (classes) and
modularity

Share with me your solution on github

We can discuss your solutions during next lesson

This is not part of the evaluation (for better or worse)

Jonathan Cacace 18 March 2020 56

