
Lesson 2: Robotics programming
technologies

Jonathan Cacace
jonathan.cacace@unina.it

PRISMA Lab
Department of Electrical Engineering and Information Technology

University of Naples Federico II

www.prisma.unina.it

Jonathan Cacace 11 March 2020 1

Robot Programming

Robot programming languages:

Native robot programming language:

KRL: Kuka Robot Language
Kuka Sunrise
RoboDK

With these languages develop intelligent robotic
application performing complex tasks is not easy

They are considered to be implement cyclical motion in a
completely known environment

Advanced robotic applications are programmed using
standard programming languages

Jonathan Cacace 11 March 2020 2

Robot Programming

System setup to program robots:

OS: Unix based OS

Programming language: C++

Version control: git

Why C++?
C++: fast and versatile, it can be used both for high level
reasoning and for low level control.

Jonathan Cacace 11 March 2020 3

Linux OS

Linux: family of open source Unix-like operating systems
based on the Linux kernel (kernel first release 1991).

Ubuntu: one of the most popular linux distributions

Ubuntu is released every six months, with long-term
support (LTS) releases every two years.

The most recent long-term support release at writing time
is 18.04 LTS (Bionic Beaver), which is supported until 2023
under public support.

Jonathan Cacace 11 March 2020 4

Basic Linux commands

pwd (print working directory): when you first open the
terminal, you are in the home directory of your user. To
know which directory you are in, you can use the pwd
command. It gives us the absolute path, which means the
path that starts from the root.

$ pwd

$ /home/jcacace

Jonathan Cacace 11 March 2020 5

Basic Linux commands

ls: use the ls command to know what files are in the
directory you are in. You can see all the hidden files by
using the command ls -a.

Jonathan Cacace 11 March 2020 6

Basic Linux commands

cd: Use the cd command to go to a directory. For example,
if you are in the home folder, and you want to go to the
downloads folder, then you can type:

$ cd Downloads

Remember, this command is case sensitive, and you have
to type in the name of the folder exactly as it is. To go
back from a folder to the folder before that, you can type

$ cd ..

The two dots represent back.

Jonathan Cacace 11 March 2020 7

Basic Linux commands

mkdir & rmdir: Use the mkdir command when you need
to create a folder or a directory. To delete a directory
containing files, use rmdir.

Jonathan Cacace 11 March 2020 8

Basic Linux commands

rm: Use the rm command to delete files and directories.
Use

$ rm -r

To delete just the directory. It deletes both the folder and
the files it contains when using only the rm command.

Jonathan Cacace 11 March 2020 9

Basic Linux commands

touch: the touch command is used to create a file. It can
be anything, from an empty txt file to an empty zip file.
For example:

$ touch new.txt

Jonathan Cacace 11 March 2020 10

Basic Linux commands

cp: Use the cp command to copy files through the
command line. It takes two arguments: The first is the
location of the file to be copied, the second is where to copy.

Jonathan Cacace 11 March 2020 11

Basic Linux commands

mv: Use the mv command to move files through the
command line. We can also use the mv command to
rename a file. For example, if we want to rename the file
”text” to ”new”, we can use

$ mv text new

It takes the two arguments, just like the cp command.

Jonathan Cacace 11 March 2020 12

Basic Linux commands

locate: the locate command is used to find a file in a
Linux system. This command is useful when you dont
know where a file is saved or the actual name of the file.
So, if you want a file that has the word ”hello” gives the
list of all the files in your Linux system containing the word
hello when you type in locate -i hello. In order to have an
update representation of the filesystem and be able to find
even the newest files contained in your machine you should
insert the following command

$ sudo updatedb

The first time this command could take a bit of time

Jonathan Cacace 11 March 2020 13

Basic Linux commands

echo: the echo command helps us move some data, usually
text into a file. For example, if you want to create a new
text file or add to an already made text file, you just need
to type in:

$ echo "hello, my name is Jonathan" > new.txt

Jonathan Cacace 11 March 2020 14

Basic Linux commands

cat: use the cat command to display the contents of a file.
It is usually used to easily view programs.

Jonathan Cacace 11 March 2020 15

Basic Linux commands

nano: nano is a text editors already installed in your
Linux command line. The nano command is a good text
editor that denotes keywords with color and can recognize
most languages. It is one of the simplest text editor usable
via command line.

Jonathan Cacace 11 March 2020 16

Basic Linux commands

sudo: a widely used command in the Linux command line,
sudo stands for SuperUser Do. So, if you want any
command to be done with administrative or root privileges,
you can use the sudo command. For example, if you want
to edit a file like alsa-base.conf, which needs root
permissions, you can use the command:

$ sudo nano alsa-base.conf

Jonathan Cacace 11 March 2020 17

Basic Linux commands

chmod: use chmod to make a file executable and to
change the permissions granted to it in Linux. To make a
file executable, you can use the command

$ chmod +x numbers.py

Another situation in which this command is particularly
useful is when your application needs to access to USB
devices. In such case the device should have executable
privileges.

$ chmod 777 /det/ttyUSB0

Jonathan Cacace 11 March 2020 18

Basic Linux commands

ping: use ping to check your connection to a server.

Jonathan Cacace 11 March 2020 19

Basic Linux concepts

filesystem: layout of Linux: directory tree, which starts at the
/ directory, also known as the root directory. Directly
underneath / are important sub-directories: /bin, /etc, /dev,
and /usr, among others. These directories in turn contain other
directories which contain system configuration files, programs,
and so on.

Jonathan Cacace 11 March 2020 20

Basic Linux concepts

filesystem: Each user has a home directory, which is the
directory dedicated for the user to store his or her files. A user
has completely control of its user space (/home/user).
Differently, for the higher level of the filesystem the operations
must be performed with the use of superuser privileges (sudo in
ubuntu).

Jonathan Cacace 11 March 2020 21

Basic Linux concepts

.bashrc: the linux shell is called bash. When a new interactive
linux shell is open a series of configuration files are elaborated.
In particular, bash reads and executes /etc/bash.bashrc and
then ~/.bashrc. For this reason, all the system configuration
that you want to automatically load can be placed in the bashrc
file. This file is placed in the home directory of the user. in
addition, it is a hidden file (in fact its name starts with a dot):
/home/user/.bashrc.

Jonathan Cacace 11 March 2020 22

Basic Linux concepts

Environment variables: set of dynamic named values stored
within the system that are used by applications launched in
shells. Environment variables allow you to customize how the
system works and the behavior of the applications on the
system. In bash a variable can be set in the following way:

$ export V=environment

While, to print the content of a variable you should refer to the
variable name using the $ character:

$ echo $V

Jonathan Cacace 11 March 2020 23

Basic Linux concepts

Environment variables: In the following a list of commands
used to handle environment variables are reported:

$ echo $VARIABLE #To display value of a variable

$ env #Displays all environment variables

$ VARIABLE_NAME=variable_value #Create a new variable

$ unset variable_value #Remove a variable

$ export Variable=value

To set value of an environment variable

Jonathan Cacace 11 March 2020 24

Basic Linux concepts

APT package manager: In ubuntu the package manager is
called APT (Advanced Packaging Tool). APT simplifies the
process of managing software on Unix-like computer systems by
automating the retrieval, configuration and installation of
software packages. In order to install a new software you should
use the following syntax:

$ sudo apt-get install [PACKAGE NAME]

Jonathan Cacace 11 March 2020 25

Basic Linux concepts

APT package manager: If the package exists in the apt
repository, the list of dependencies of such package will be also
automatically installed. If you want to check if a software is
contained in the apt repository you could use the following
command:

$ apt-cache search [PACKAGE NAME]

Otherwise, if you know only initial part of the package you can
used the auto completion.

Jonathan Cacace 11 March 2020 26

Basic Linux concepts

APT:

update is used to re-synchronize the package index files
from their sources. The lists of available packages are
fetched from the location(s) specified in
/etc/apt/sources.list.

upgrade is used to install the newest versions of all
packages currently installed on the system from the sources
enumerated in /etc/apt/sources.list.

Jonathan Cacace 11 March 2020 27

Basic Linux concepts

To add additional software list to the apt repository you should
edit the files included in /etc/apt directory. On Ubuntu and all
other Debian based distributions, the apt software repositories
are defined in the /etc/apt/sources.list file or in separate
files under the /etc/apt/sources.list.d/ directory.

Jonathan Cacace 11 March 2020 28

Basic Linux concepts

If you already installed ROS in your system, you should know
that the first instruction of ROS tutorial is the following:

$ sudo sh -c echo "deb http://packages.ros.org/ros/ubuntu

$(lsb_release -sc)

main" > /etc/apt/sources.list.d/ros-lat

This line uses the echo command to create a file called
ros-latest.list filled with the address of the repository of
ROS packages. Now, the apt command should be able to see
the packages contained in the ROS repository.

Jonathan Cacace 11 March 2020 29

C++ compilation

C++:

General-purpose programming language

Can be used to write programs for nearly any processor

High-level language...

...give access to some lower-level functionality than other
languages (e.g. memory addresses)

both for high level robot programming (reasoning, planning
and so on) and for robot low level control

Jonathan Cacace 11 March 2020 30

C++ programming

Compilation:

The source code of a C++ program is written in a text file.
Object files are intermediate files that represent an incomplete
copy of the program. They have some markers indicating which
missing pieces of code it depends on.

Jonathan Cacace 11 March 2020 31

C++ compilation

The linker takes those object files and the compiled
libraries of predefined code that they rely on, fills in all the
gaps, and spits out the final program, which can then be
run by the operating system

In C++, all these steps are performed ahead of time,
before you start running a program. This is one of the
reasons C++ code runs far faster than code in many more
recent languages

Jonathan Cacace 11 March 2020 32

C++ programming

Sample program:

1 #include <iostream> //IO ope ra t i on s
2 us ing namespace std ;
3 // Program entry po int
4 int main () {
5 // Say He l lo
6 cout << " he l l o , world" << endl ;
7 // Terminate main ()
8 return 0 ;
9 }

10 // End o f main func t i on

Jonathan Cacace 11 March 2020 33

Pointers

In C++, after declared a variable...

The computer associates its name with a particular
location in memory where the value of the variable is stored

When this variable is referred, the computer firstly look up
the address the correspond to the variable name, then go
to the location in memory to retrieve the value it contains

Jonathan Cacace 11 March 2020 34

Pointers

C++ allows us to perform these steps independently:

&x evaluates to the address of x in memory

*(&x) takes the address of x and dereferences it: it
retrieves the value at that location in memory. Thus,
*(&x) evaluates to the same thing as x.

Jonathan Cacace 11 March 2020 35

Pointers

Pointers allow us to manipulate data much more flexibly.
Manipulating the memory addresses of data can be more
efficient than manipulating the data itself:

Pass-by-reference variables is more efficient.

Manipulate complex data structures efficiently, even if their
data is scattered in different memory locations.

Return multiple values from a single function.

Jonathan Cacace 11 March 2020 36

Pointers

int *ptr declares the pointer to an integer value, which we are
initializing to the address of x. We can have pointers to values
of any type.

1 void squareByPtr (int ∗numPtr) {
2 ∗numPtr= ∗numPtr∗ ∗ numPtr ;
3 }
4

5 int main () {
6 int x=5;
7 squareByPtr (&x) ;
8 std : : cout << x << std : : endl ; //Pr in t s 25
9 }

Jonathan Cacace 11 March 2020 37

Pointers

The * operator is used in two different ways:

when declaring a pointer, * is placed before the variable
name to indicate that the variable being declared is a
pointer.

when using a pointer that has been set to point to some
value, *is placed before the pointer name to dereference it,
to access or set the value it points to

A similar distinction exists for &, which can be used either to
indicate a reference datatype (int &x;), or to take the address of
a variable (int *ptr=&x;).

Jonathan Cacace 11 March 2020 38

Smart pointers

Pointers could be difficult to use (memory leaking)!
A smart pointer represents a class of objects aiming at
simplify the usage of pointers:

Smart pointer is implemented as a template class that
mimics, by means of operator overloading, the behaviors of
a traditional (raw) pointer

Prevent most situations of memory leaks by making the
memory deallocation automatic

Provides feature like automatic memory management or
bounds checking

Jonathan Cacace 11 March 2020 39

Smart pointers

ROS uses smart pointers (we will see how!).

ROS uses the std::shared_ptr: a shared_ptr is a
container for a raw pointer.

It maintains reference counting ownership of its contained
pointer in cooperation with all copies of the shared_ptr.
An object referenced by the contained raw pointer will be
destroyed when and only when all copies of the
shared_ptr have been destroyed.

Jonathan Cacace 11 March 2020 40

Smart pointers

ROS uses smart pointers (we will see how!).

With shared_ptr multiple threads can safely
simultaneously access different shared_ptr that point to
the same object.

shared_ptr is considered when multiple owners should
access to the same object in memory.

A shared_ptr object effectively holds a pointer to the
resource that it owns or holds a null pointer. A resource
can be owned by more than one shared_ptr object;

When the last shared_ptr object that owns a particular
resource is destroyed, the resource is freed.

Jonathan Cacace 11 March 2020 41

Smart pointers

1 // A l l o c a t e s 1 i n t e g e r and i n i t i a l i z e i t with
value 5 .

2 std : : shared ptr< int> p0 (new int (5)) ;
3 //Valid , a l l o c a t e s 5 i n t e g e r s .
4 std : : shared ptr< in t []> p1 (new int [5]) ;
5 //Both now own the memory.
6 std : : shared ptr< in t []> p2 = p1 ;
7 //Memory s t i l l e x i s t s , due to p2.
8 p 1 . r e s e t () ;
9 //Dele t e s the memory , s i n c e no one else owns the

memory.
10 p 2 . r e s e t () ;

Jonathan Cacace 11 March 2020 42

Classes

Class represent user-defined data types grouping together
related pieces of information.
Example: geometric vector.

1 c l a s s Vector {
2 p r i v a t e :
3 double xStart ;
4 double xEnd ;
5 double yStart ;
6 double yEnd ;
7 } ;

Jonathan Cacace 11 March 2020 43

Classes

Some functions are closely associated with a particular class,
like the calculation of the norm of a vector

1 c l a s s Vector {
2 pub l i c :
3 f loat get norm () ;
4 p r i v a t e :
5 double xStart ;
6 double xEnd ;
7 double yStart ;
8 double yEnd ;
9 } ;

Jonathan Cacace 11 March 2020 44

Classes

A class needs of a constructor: a method that is called when an
instance is created. In our case, we can consider to initialize the
member of the class (the points of the vector) when an instance
of the class is created:

1 c l a s s Vector {
2 pub l i c :
3 Vector (f loat x s t a r t , f loat xend ,
4 f loat y s t a r t , f loat yend) ;
5 f loat get norm () ;
6 p r i v a t e :
7 double xStart ;
8 double xEnd ;
9 double yStart ;

10 double yEnd ;
11 } ;

Jonathan Cacace 11 March 2020 45

Classes

Initialize and array and get its norm:

1 Vector : : Vector (f loat x s t a r t , f loat xend ,
2 f loat y s t a r t , f loat yend) {
3 xStart = x s t a r t ;
4 xEnd = xend ;
5 yStart = y s t a r t ;
6 yEnd = yend ;
7 }
8

9 f loat Vector : : get norm () {
10 return s q r t (pow ((xEnd − xStart) , 2) + pow ((yEnd −

yStart) , 2))
11 }

Jonathan Cacace 11 March 2020 46

Classes

Initialize and array and get its norm:

1

2 int main () {
3 Vector v (0 , 0 , 2 , 2) ;
4 std : : cout << v.get norm () << std : : endl ;
5 return 0 ;
6 }

Jonathan Cacace 11 March 2020 47

Class modifiers

We can choose three different modifiers for class members:

public: members are accessible from outside the class

private: members cannot be accessed (or viewed) from
outside the class

protected : members cannot be accessed from outside the
class, however, they can be accessed in inherited classes.

Jonathan Cacace 11 March 2020 48

Data hiding

How to choose modifiers?
Data hiding: hide internal data members ensures exclusive data
access to class members and protects object integrity by
preventing unintended or intended changes:

Make all the data members private

Create public setter and getter functions for each data
member

1 void Vector : : s e t xend (f loat xend) {
2 xEnd = xend ;
3 }
4 f loat Vector : : get xend () {
5 return xEnd ;
6 }

Jonathan Cacace 11 March 2020 49

C++ Compilation

To generate executable files we need to compile one or more
source files.

GCC (GNU Compiler Collection) has grown over times to
support many languages such as C, C++, Objective-C,
Objective-C++, Java, etc, . . .

GNU C compiler: gcc

GNU C++ compiler: g++

Jonathan Cacace 11 March 2020 50

GCC

Sample program hello.c.

1 #include <stdio.h>
2 int main () {
3 p r i n t f ("Hello , world !\n") ;
4 return 0 ;
5 }

$ gcc hello.c

$ chmod a+x a.out

$./a.out

To specify the output filename, use -o option:

$ gcc -o hello.exe hello.c

Jonathan Cacace 11 March 2020 51

C++ Compilation

A library is a collection of pre-compiled object files that can be
linked into your programs via the linker:

A static library has file extension of ”.a”. When your
program is linked against a static library, the machine code
of external functions used in your program is copied into
the executable.

A shared library has file extension of ”.so” (shared
objects). When your program is linked against a shared
library, only a small table is created in the executable.
Before the executable starts running, the operating system
loads the machine code needed for the external functions

Executable files smaller
No need to recompile your program

Jonathan Cacace 11 March 2020 52

C++ Compilation

The compiler and linker will not find the headers/libraries
unless you set the appropriate options!!

For each of the headers used in your source (via #include

directives), the compiler searches the so-called
include-paths for these headers, specified via -Idir option
(or environment variable CPATH). Since the header’s
filename is known (e.g., iostream.h, stdio.h), the
compiler only needs the directories.

Jonathan Cacace 11 March 2020 53

C++ Compilation

The compiler and linker will not find the headers/libraries
unless you set the appropriate options!!

The linker searches the so-called library-paths for libraries
needed to link the program into an executable and can be
specified via -Ldir option (or environment variable
LIBRARY_PATH)

You also have to specify the library name. In Unix, the
library libxxx.a is specified via -lxxx option.

The linker needs to know both the directories as well as the
library names.

Jonathan Cacace 11 March 2020 54

C++ Compilation

GCC uses the following environment variables:

PATH: For searching the executables and run-time shared
libraries (.so).

CPATH: For searching the include-paths for headers. It is
searched after paths specified in -I¡dir¿ options.
C_INCLUDE_PATH and CPLUS_INCLUDE_PATH can be used to
specify C and C++ headers if the particular language was
indicated in pre-processing.

LIBRARY_PATH: For searching library-paths for link
libraries. It is searched after paths specified in -L¡dir¿
options.

Jonathan Cacace 11 March 2020 55

MAKE

While GCC is a compiler, MAKE is a building tool that can use
GCC:

The MAKE utility automates building process of executable
from source code.

MAKE uses a so-called makefile, which contains rules on
how to generate executable.

Jonathan Cacace 11 March 2020 56

MAKE

Use a makefile to compile the hello.c source code:

1 a l l : h e l l o
2

3 h e l l o : h e l l o . o
4 gcc −o h e l l o h e l l o . o
5

6 h e l l o . o : h e l l o . c
7 gcc −c h e l l o . c
8

9 c l ean :
10 rm h e l l o . o h e l l o

Jonathan Cacace 11 March 2020 57

MAKE

To compile the program, run the make command in the same
directory of the makefile.

$ make

makefile is typically used when you have a complex
compilation structure for your program (multiple sources,
libraries and so on)

variables can be used to simply the content of the makefile

Jonathan Cacace 11 March 2020 58

MAKE

Automatic variables are set by make after a rule is matched.
There include:

$@: the target filename.

$*: the target filename without the file extension.

$<: the first prerequisite filename.

$^: the filenames of all the prerequisites, separated by
spaces, discard duplicates.

$+: similar to $^, but includes duplicates.

$?: the names of all prerequisites that are newer than the
target, separated by spaces.

Jonathan Cacace 11 March 2020 59

MAKE

The previous makefile can be re-written as:

1 a l l : h e l l o
2

3 # $@ matches the t a r g e t ;
4 # $< matches the f i r s t dependent
5 h e l l o : h e l l o . o
6 gcc −o $@ $<
7

8 h e l l o . o : h e l l o . c
9 gcc −c $<

10

11 c l ean :
12 rm h e l l o . o h e l l o

Jonathan Cacace 11 March 2020 60

CMake

There is a bit more...
Using make to compile complex projects could be difficult:
CMake automatizes the generation of the makefile.

GCC: Compiler

MAKE: building tool

CMake: generator of build-systems

Jonathan Cacace 11 March 2020 61

CMake

The build process with CMake takes place in two stages:

Generation of makefile by means of configuration
(CMakeLists.txt).

$ cmake

Compilation using the makefile as shown before.

$ make

Jonathan Cacace 11 March 2020 62

CMake

CMakeLists.txt to compile hello.c makefile:

1 # Spec i f y the minimum ve r s i on for CMake
2 cmake minimum required (VERSION 2 . 8)
3 # Pro j e c t ’ s name
4 p r o j e c t (h e l l o)
5 # Set the output f o l d e r where your program w i l l be

c reated
6 s e t (CMAKE BINARY DIR ${CMAKE SOURCE DIR}/bin)
7 s e t (EXECUTABLE OUTPUT PATH ${CMAKE BINARY DIR})
8 s e t (LIBRARY OUTPUT PATH ${CMAKE BINARY DIR})
9 # The f o l l o w i n g f o l d e r w i l l be inc luded

10 i n c l u d e d i r e c t o r i e s ("${PROJECT SOURCE DIR}")

Jonathan Cacace 11 March 2020 63

CMake

In this file we used the following global variables:

CMAKE_BINARY_DIR: binary sources

CMAKE_SOURCE_DIR: source file directory

EXECUTABLE_OUTPUT_PATH: bin output path
LIBRARY_OUTPUT_PATH: lib output path

PROJECT_SOURCE_DIR: project source directory

Finally, to compile the source code you should add this final
line to your CMakeLists.txt:

1 add executab le (h e l l o ${PROJECT SOURCE DIR}/ h e l l o . c)

Jonathan Cacace 11 March 2020 64

GIT

Version Control System:

Is a system that records changes to a file or set of files over
time so that you can recall specific versions later

It allows you to revert files back to a previous state, revert
the entire project back to a previous state, review changes
made over time, see who last modified something that
might be causing a problem, who introduced an issue and
when, and more

Github (www.github.com) is one of the most used VCS
based on GIT

Jonathan Cacace 11 March 2020 65

www.github.com

GIT

What is a repository? A repository is nothing but a collection
of source code contained in your Development Environment :

Working Directory : files in your working directory

Staging Area: a temp area that git add is placed into.

Local Repository : the repository on your machine

Remote Repository : the repository on the server

Jonathan Cacace 11 March 2020 66

GIT

Jonathan Cacace 11 March 2020 67

GIT

Start with repository:

Create a new repository:

$ git init

If you want to connect a (local) repository to a remote
server, you need to add it with:

$ git remote add origin <server>

Checkout a repository: create a working copy of a local
repository by running the command

$ git clone /path/to/repository

Jonathan Cacace 11 March 2020 68

GIT

Manage the repository:

You can propose changes (add it to the Index) using:

$ git add <filename> or git add *

To actually commit these changes use:

$ git commit -m "Commit message"

Your changes are now in the HEAD of your local working
copy. To send those changes to your remote repository,
execute:

$ git push origin master

Jonathan Cacace 11 March 2020 69

Branching

$ git checkout -b branch: to switch back to master

$ git checkout master: and delete the branch again

$ git branch -d branch: and delete the branch again

Jonathan Cacace 11 March 2020 70

