Robotics Lab - Lecture 3
Starting with ROS programming (Part 1)

JONATHAN CACACE

March 17, 2020

ii

Contents

1 Starting with ROS programming
1.1 Environment configuration
1.2 Createa ROSpackage,

1.3 ROS Service e
1.4 Exercise

iii

iv

CONTENTS

Preface

This manuscript contains the lecture notes for the Robotics Lab class taken at
University of Naples Federico II for the students of automation engineering
master degree. The aim of this course is to give an overview of the fun-
damental tools and techniques used to program advanced robotics systems
(both industrial and mobile). After a brief introduction of the technolo-
gies commonly used to program robots (e.g. Linux, c++, git), the Robot
Operating System (ROS) framework will be introduced and deeply studied.
Simulation software will help the course attenders to test state-of-art robotic
algorithms and their own robot control software.

In this lesson, we discuss two ROS packages implementing the communi-
cation protocols available in ROS: the publish-subscribe ad the service. For
each package, we also show some useful command line tool used in ROS to
handle the execution of ROS nodes.

CONTENTS

1

Starting with ROS
programming (Part 1)

1.1 Environment configuration

You need to install ROS in your system before to start programming with
it. In our lessons we use ROS Melodic, however similar steps can be follow
to install other ROS distributions.

The first step is the setup your computer to accept software from packages.
ros.org.

$ sudo sh -c ’echo "deb http://packages.ros.org/ros/ubuntu
$(1sb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list’

$ sudo apt-key adv --keyserver ’hkp://keyserver.ubuntu.com:80’
--recv-key C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654

Then you should update your APT repository:
$ sudo apt-get update

Finally, you are ready to install ROS. There are many different libraries
and tools in ROS. The full version of ROS includes all the packages com-
monly used in robotic programming and can be installed with the following
command:

$ sudo apt-get install ros-melodic-desktop-full

This step will take some time. Moreover, the latter command doesn’t install
all the packages available in ROS. To find additional packages, use:

$ apt-cache search ros-melodic

Now ROS is installed in your system. However, you are not able to used
ROS command yet. In fact, at this point if you try to run a ROS command
like roscd in your linux shell, you will get the following error:

3

4 1. STARTING WITH ROS PROGRAMMING (PART 1)

$ Command ’roscd’ not found, did you mean:
$ command ’rosco’ from deb python-rosinstall

$ Try: sudo apt install <deb name>

This happen because the ROS environment is not correctly configured. By
default, ROS in installed in the following directory:

$ /opt/ros/${ROS_VERSION}

To properly load the environment you have to source the setup file included
in the installation directory of ROS.

$ source /opt/ros/melodic/setup.bash

Now you should be able to use the ROS commands. However, with this
setup the user workspace is set to a directory owned by the super user (i.e.
/opt/ros/melodic/share). So, before to continue, you should create your
own workspace in the user space:

cd ~

mkdir -p ros_ws/src
cd ros_ws/src
catkin_init_workspace
cd ..

catkin_make

HF P P BH H BH

The catkin_make is the compilation command. Now you have created a
ROS workspace called ros_ws. If you check the content of this directory, it
contains three folders: build, devel and src. In the src directory you must
create or download new ROS packages. If a package is not placed there, it
will not be compiled. The build directory instead contains the compilation
file, while the devel folder contains the compiled libraries.

To set ros_ws workspace as the default workspace you need to source
the setup.bash file contained in the devel folder. To source this file au-
tomatically when a new linux shell is opened, you could be put the source
command bashrc file:

$ echo "source ~/ros_ws/devel/setup.bash" >> ~/.bashrc
To test if everything is properly configure, you could try to enter the roscd

command in a linux shell. If everything is right, this command will move
you in the devel folder of your ROS workspace.

1.2. CREATE A ROS PACKAGE 5

1.2 Create a ROS package

As already stated, all ROS packages, either created from scratch or down-
loaded from other code repositories, must be placed in the src folder of the
ROS workspace, otherwise they can not be recognized by the ROS system
and compiled.

To create a ROS package, switch to the catkin workspace src folder and
create the package, using the following command:

$ catkin_create_pkg package_name [dependencyl] [dependency?2]

Try to create a simple node implementing the publish/subscribe communi-
cation protocol. Call this package: ros_topic:

$ catkin_create_pkg ros_topic roscpp std_msgs
As dependencies, we specified the following:

e roscpp: This is the C++ implementation of ROS. It is a ROS client
library which provides APIs to C++ developers to make ROS nodes
with ROS topics, services, parameters, and so on. We are including
this dependency because we are going to write a ROS C++ node. Any
ROS package which uses the C++ node must add this dependency.

e std_msgs: This package contains basic ROS primitive data types, such
as integer, float, string, array, and so on. We can directly use these
data types in our nodes without defining a new ROS message.

After ran this command, a new directory appears in your ROS workspace.
A typical structure of an ROS package is shown in Fig. 1.1.

talker.py talker.cpp
listener.py listener.cpp

Figure 1.1: Structure of a typical ROS package

6 1. STARTING WITH ROS PROGRAMMING (PART 1)

e config: All configuration files that are used in this ROS package are
kept in this folder. This folder is created by the user and it is a common
practice to name the folder config to keep the configuration files in it.

e include/package_name: This folder consists of headers and libraries
that we need to use inside the package.

e script: This folder keeps executable Python scripts. In the block
diagram, we can see two example scripts.

e src: This folder stores the C++4 source codes.

e launch: This folder keeps the launch files that are used to launch one
or more ROS nodes.

e msg: This folder contains custom message definitions.
e srv: This folder contains the services definitions.
e action: This folder contains the action files.

e package.xml: This is the package manifest file of this package. In
particular, this file defines properties about the package such as the
package name, version numbers, authors, maintainers, and dependen-
cies on other catkin packages.

e CMakeLists.txt: This files contains the directives to compile the
package.

After that the ros_topic has been created, you should be able to use the
first ROS command introduced here, the roscd. In particular, roscd com-
mand is used to change the current directory using a package name or a
special location. If we give the argument a package name, it will switch to
that package folder (i.e. ~/ros_ws/devel). Consider that after created or
downloaded a new package in your workspace, you should inform the ROS
system about it, updating the ROS filesystem using the command:

$ rospack profile

Now you can try to reach the ROS package folder using the following com-
mand:

$ roscd ros_topic

If everything is working properly, you will be move in the directory of the
package:

$ ~/ros_ws/src/ros_topic

© 0w N O U R W N =

I R =
S © 0 N O Uk W N = O

1.2. CREATE A ROS PACKAGE 7

After that the ROS package has been successfully created, we can start
adding nodes to it. A ROS package can contain multiple ROS nodes. We
will create two nodes, one to publish a topic and one to subscribe to a topic.
Let’s start with the publisher one.

To create a new node in the ros_topic package, move in the src direc-
tory of the package and create an empty source file:

$ roscd ros_topic/src
$ touch ros_publisher.cpp

The aim of this node is to publish an integer value on a topic called /numbers.

#include "ros/ros.h'
#include "std_ msgs/Int32.h"
#include <iostream>

int main(int argc, char xxargv) {
ros::init (argc, argv,"ros_topic_publisher");
ros :: NodeHandle nh;
ros :: Publisher topic_pub =
nh.advertise<std_msgs:: Int32 >("/numbers" ,10);
ros :: Rate rate (10);
int count = 0;
while (ros::ok()) {
std_msgs:: Int32 msg;
msg.data = count++;
ROS_INFO("%d" ,msg. data);
topic__pub.publish (msg);
rate.sleep ();

}

return 0;

}
In the above code, we firstly include the header files needed to use ROS api

(roscpp): the ros/ros.his the main header of ROS, while the std_msgs/Int32.h

is the standard message definition of the integer datatype. In order to ini-
tialize a ROS node with a given name, we used the following code line:

ros::init (argc, argv,"ros_topic_publisher");
This line is mandatory for all ROS nodes, otherwise will be impossible to
use all ROS api functions. The name provided in the init function should
be unique and will be used by the ROS master to handle it. Each ROS node

typically has a NodeHandle, an object used to communicate with the whole
ROS system. To declare it we use the following line of code:

ros :: NodeHandle nh;

Then, we can create the object representing the topic publisher:

ros :: Publisher topic_pub = nh.advertise<std_msgs:: Int32 >("/numbers",

This will create a topic publisher and name the topic /numbers with a
message type std_msgs::Int32. The second argument is the buffer size.

10);

8 1. STARTING WITH ROS PROGRAMMING (PART 1)

It indicates how many messages need to be put in a buffer before sending.
It should be set to high if the data sending rate is high is used to set the
frequency of sending data.

Another important feature of ROS is represented the ros: :Rate object.
This object is used to run loops at a desired frequency. Note that the Rate
takes into account the elapsed time between the end of the previous loop
and the new loop. When you create the Rate object you specify also the
desired loop rate (in Hetz). To create an infinite while loop, we exploit
the ros::0k() function, that returns zero when Ctrl4+C is pressed. The
message that we want to publish is a std_msgs: : Int32, so, after declared it
we fill its data field. How is composed a std_msgs: : Int327 If you want to
know how a message is composed, you can used the rosmsg command. The
inbuilt tools called rosmsg is used to get information about ROS messages.
Here are some parameters used along with rosmsg:

$ rosmsg show [message]: This shows the message description

$ rosmsg list: This lists all messages installed in your system
$ rosmsg md5 [message] : This displays mdbsum of a message

$ rosmsg package [package_name] : This lists messages

in a package

So, considering our initial aim, to show how is composed the std_msgs: : Int32
message, we can use the rosmsg show command. So open a new terminal
and insert the following command:

$ rosmsg show std_msgs/Int32

Output:
$ int32 data

So to fill the contents of std_msgs: : Int32 message, you need to refer to the
data field.

To publish the message to the /numbers topic we use the method publish,
who takes as input the message to broadcast on your topic.

Compile and run a ROS node

To compile a ROS package you need to edit its CMakeLists.txt file. In
particular, we have to inform the building tool about what source file must
be compiled and its dependencies. To compile the ROS publisher node, add
the following lines at the end of the CMakeLists.txt:

1 #This will create executables of the nodes

2 add__executable(topic__publisher src/ros_publisher.cpp)

3

4 #This will link executables to the appropriate libraries
5 target_link_libraries (topic__publisher ${catkin_ LIBRARIES})

1.2. CREATE A ROS PACKAGE 9

At this point, you can use the catkin_make command to build the package.
We can first switch to a workspace:

$ cd ~/ros_wus
Build ros_topic package as follows:
$ catkin_make

Consider that the catkin_make command compiles all the package in your
workspace. Sometimes, you could have draft versions of other package that
bring to compilation errors or unsatisfied dependencies. In this way the
compilation could fail. To compile only one package and not the entire
workspace you can use the DCATKIN_WHITELIST_PACKAGES argument. With
this option, it is possible to set one or more packages enabled to be compiled.

$ catkin_make -DCATKIN_WHITELIST_PACKAGES="pkgl,pkg2,..."

Note that is necessary to revert this configuration to compile other pack-
ages not specified in the WHITELIST. In fact, after set the WHITELIST it will
remain saved in your system configuration, and you can directly execute
the catkin_make command to compile only the packages specified in the
WHITELIST. Differently, to bring again the list to the initial configuration
you can use the following command:

$ catkin_make -DCATKIN WHITELIST PACKAGES=""

Now you are ready to run the publisher node. First of all, to execute
ROS nodes you must activate a roscore in your system. To do this, on a
linux terminal, run the following command:

$ roscore

This command runs the ROS master node on your local machine. Consider
that this command locks your terminal, so to run other commands you need
to open other linux shells.

To run the publisher node, you can use the rosrun command:

$ rosrun ros_topic topic_publisher

The output on the linux shell shows the INFO about the integer that are going
to be published on /numbers topic. We can use two additionally commands
to debug and understand the working of the nodes: rosnode and rostopic.

$ rosnode info [node_name]: This will print the
information about the node

$ rosnode kill [node_name]: This will kill a
running node

$ rosnode list: This will list the running nodes

10 1. STARTING WITH ROS PROGRAMMING (PART 1)

$ rosnode machine [machine_name] : This will list

the nodes running on a particular

machine or a list of machines

$ rosnode ping: This will check the connectivity of a node
$ rosnode cleanup: This will purge

the registration of unreachable nodes

In particular, the output of rosnode info /ros_topic_publisher will pro-
vide information about the published and subscribed topics:

Node [/ros_topic_publisher]
Publications:

* /numbers [std_msgs/Int32]

* /rosout [rosgraph_msgs/Log]

Subscriptions: None

Services:
* /ros_topic_publisher/get_loggers
* /ros_topic_publisher/set_logger_level

contacting node http://jcacace-Inspiron-7570:43001/
Pid: 19478

Connections:

* topic: /rosout

* to: /rosout

* direction: outbound

* transport: TCPROS

This is useful to understand the input and output of a node. As for the
rostopic command, it can be used to get information about ROS topics.
Here is the syntax of this command:

$ rostopic bw /topic: This command will display
the bandwidth used by the given topic.

$ rostopic echo /topic: This command will

print the content of the given topic in a human
readable format. Users can use the "-p"

option to print data in a csv format.

$ rostopic find /message_type: This command will
find topics using the given message type.

$ rostopic hz /topic: This command will display
the publishing rate of the given topic.

$ rostopic info /topic: This command will print
information about an active topic.

1.2. CREATE A ROS PACKAGE 11

$ rostopic list: This command will list all active
topics in the ROS system.

$ rostopic pub /topic message_type args: This
command can be used to publish a value to a

topic with a message type.

$ rostopic type /topic: This will display the
message type of the given topic.

We can use these commands on the output of our publisher node. In par-
ticular, check which kind of topics are published by the node:

$ rostopic list

Output:
/numbers
/rosout
/rosout_agg

And check its content:

$ rostopic echo /numbers

Output:

data: 609
data: 610
data: 611

Before to discuss the subscriber node, let’s introduce additional ROS
graphical tools. In the first versions of ROS only few graphical tools were
considered to plot data or display the connections between ROS nodes. In
2012, the first version of ROS including the rqt graphical interface has been
released.

rqt is a software framework that implements the various GUI tools in the
form of plugins. One can run all the existing GUI tools as dockable windows
within rqt. The tools can still run in a traditional standalone method, but
rqt makes it easier to manage all the various windows on the screen at one
moment. To start rqt just type this command in your linux shell:

$ rqt

This command will open a new windows, as depicted in Fig. 1.2. In the
rqt start window you can load any desired plugin present in your system.
You can also add custom plugins. Try to use the Topic Monitor plugin
to inspect the data published on the /numbers topic. Open the plugin,

© 0 N Ok W N

= =
= O

12 1. STARTING WITH ROS PROGRAMMING (PART 1)

File GUGIEE Running Perspectives Help

E‘ chiLéill;f - o o

B Actions. *

5 Configuration 3

B introspection »

I8 Logging »

5 Miscellaneous Tools »

&3 Robot Tools »

® SVH Reset

B Servicas »

> Message Publisher

B Visualization * Message Type Browser

Figure 1.2: rqt window.

File Plugins Running Perspectives Help
(i Topic Monitor D@ - 0X

Topic ~ Type Bandwidth Hz Value

3 Jelicked_paint geometry_msgs/PointStamped nat monitored

3 Jinitialpose geometry_msgs/PoseWithCovarianceStamped not monitored

» /move_base_simple/goal geometry_msgs/PoseStamped not menitored

* ¥ [numbers std_msgs/int32 40.288/s 10.00

data int32 90
[frosout rosgraph_msgs/Log not monitored
] Irosout_agg rosgraph_msgs/Log not monitored

Figure 1.3: Topic monitor plugin.

and check the checkbox on this topic, as shown in Fig 1.3. As you can
see, we obtained the same result of rostopic echo command, but in a
simpler /another way.

ROS Subscriber

After ran the publisher node, you can create a subscriber node that use the
data published on /numbers topic.
Let’s now create a new source code file called ros_subscriber. cpp.

$ roscd ros_topic/src
$ touch ros_subscriber.cpp

A sample code to read the std_msgs: :Int32 data is here reported.

#include "ros/ros.h'
#include "std msgs/Int32.h"
#include <iostream>
class ROS_SUB {
public:
ROS_SUB();
void topic_cb(std_msgs::Int32ConstPtr data);
private:

ros :: NodeHandle _nh;

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

1.2. CREATE A ROS PACKAGE 13

ros :: Subscriber _ topic_sub;

b
ROS_SUB::ROS_SUB() {

__topic_sub = _nh.subscribe

("/numbers", 0, &ROS_SUB:: topic_cb, this);
}

void ROS _SUB:: topic_cb(std_msgs::Int32ConstPtr data) {
ROS_INFO(" Listener: %d", data.data);

}

int main(int argc, charxx argv) {
ros::init (argec, argv, "ros_subscriber");
ROS_SUB rs;
ros ::spin ();
return 0;

}

Differently from the publisher node, in this example we use a class called
ROS_SUB. In the constructor of the class, we declare a subscriber for the
std_msgs: :Int32 data:

__topic_sub = _nh.subscribe ('"/numbers", 0, &ROS _SUB:: topic_cb, this);

In this line of code, we have to specify the name of the topic to read, the
buffer and the callback function that receives the data. When you use
class methods as subscribers, you must specify the class in were the method
belong (&ROS_SUB: :topic_cb) but also its context. In this case, we used
this, which means that the subscriber will refer to the class it is part of.
To update ROS topics the ros::spin() function is used. In particular, we
have two functions that let all the callbacks get called for your subscriber:
ros::spin() and ros::spinOnce(). The main differences between these
two functions is that the first one is blocking function. The code after the
spin() will never be executed. In addition, it will implement an infinite
loop that makes your program alive over time.

As shown in the previous example, you can now modify the CMakeLists.txt
file to add this new node (executable) and compile it with the catkin_make
command. Now, you can launch both the nodes, the publisher and sub-
scriber. To do this, type the following commands on three different linux
shells:

$ roscore
$ rosrun ros_topic topic_publisher
$ rosrun ros_topic topic_subsciber

Now, you can use also the rostopic command to have more information
about the connection between the publisher and subscriber.

14 1. STARTING WITH ROS PROGRAMMING (PART 1)

rostopic info /numbers

Output:
Type: std_msgs/Int32

Publishers:
* /ros_topic_publisher (http://jcacace-Inspiron-7570:41703/)

Subscribers:
* /ros_subscriber (http://jcacace-Inspiron-7570:34901/)

This command provide information about the type of the message (std_msgs: : Int32),
but also the publisher (ros_topic_publisher) and the subscribers (ros_subscriber)
active in the your ROS system.
Sometimes you just need to publish some data used to test a subscriber
node (or send desired data like commanded velocity of similar). Of course,
in such context implement a ROS node from scratch could be a waste of
time. For this reason, we can directly publish a data using the command
line tool:

$ rostopic pub /numbers std_msgs::Int32 "data: 13" -r 10

This command publishes the number 13 on the topic numbers with a pub-
lishing rate of 10 Hz.

Again, try to use the graphical tools of ROS to obtain the same results of
rostopic pub command. We can use the rqt_publisher plugin of the rqt
interface. In this case, try to directly load this plugin from the command
line.

$ rosrun rqt_publisher rqt_publisher

This command will open the rqt interface with the rqt_publisher plugin.
As shown in Figs. 1.4 and 1.5, from this window you can select and add a
topic to publish, specify its value and publishing rate and finally publish the
desired value.

rgt_publisher Publisher - rgt

[>Message Publisher ok -0

2 | Topic fnumbers * | Type std_msgs/int32 ~ | Freq. |1 v pz || = %

opic_ - o —

fparticlecloud

frosout

frosout_agg

fscan

o

ftf_static

fvisualization_marker
fvisualization_marker_array |=|

Figure 1.4: rqt publisher plugin.

1.3. ROS SERVICE 15

[> Message Publisher p#E -0
£ Topic |fnumbers * | Type std_msgs/int32 = | Freq. |1 *|Hz | dp | = b
topic - type rate expression

* W /numbers std_msgs/int32 1.00
data int32 10

Figure 1.5: Publish on /numbers topic using rqt_ publisher plugin.

1.3 ROS Service

In this section, we are going to create a new ROS package to implement ROS
service protocol. The service nodes we are going to create can send a string
message as a request to the server and the server node will send another
message as a response. Differently from the example of previous section, in
which the ROS publisher used a standard message already present in the
installation of ROS (the std_msgs::Int32), in this case we have to define
the service message exchanged between the client and the server. Let’s start
creating a new ROS package called ros_service

$ roscd && cd ..

$ cd src

$ catkin_create_pkg ros_service roscpp std_msgs
message_generation message_runtime

We add two additionally dependencies for this package, the message_generation
and message_runtime, packages used to handle the building and run-time
usage of custom messages.

Before to create the source code of the ROS nodes, let’s add a custom
service message. Create a new folder called srv in the package directory
and add a srv file called service.srv. The definition of this file is as
follows:

string in

string out

In this case, both the Request and Response filed of the service are strings.
To use this service, we need to compile it. For this reason, you have to
uncomment the following lines of the CMakeLists.txt file as shown here:

Generate services in the ’srv’ folder
add_service files(

FILES

service.srv

)

16

1. STARTING WITH ROS PROGRAMMING (PART 1)

and

generate_messages (
DEPENDENCIES
std_msgs

)

After making these changes, we can build the package using catkin_make
and using the following command, we can verify the procedure:

$ rossrv show ros_service/service

If we see the same content as we defined in the file, we can confirm it’s

© 0 N O R W N

P T T T T N et
GUR W N = O © NG W N RO

working.

Now, let’s create the service server and client. Move in the src folder of

the ros_service package and create a new source file:

$ roscd ros_service/src
$ touch service_server.cpp

The content of the server is listed below:

#include "ros/ros.h'

#include "ros_service/service.h'
#include <iostream>

#include <sstream>

using namespace std;

bool service_ callback

(ros_service::service :: Request &req, ros_service::service :: Response &res) {

}

std ::stringstream ss;
ss << "Received Here";

res.out = ss.str();
ROS_INFO("From Client [%s], Server says
[%s]" ,req.in.c_str(),res.out.c_str());

return true;

int main(int argc, char sxargv) {

}

ros::init (argec, argv, "service_server');
ros :: NodeHandle n;

ros :: ServiceServer service = n.advertiseService ("service", service callback);

ROS_INFO("Ready to receive from client.");
ros ::spin ();
return O;

The ros_service/service.h header is a generated header, which con-
tains our service definition and we can use this in our code. The server
callback function is executed when a request is received on the server.
The server can receive the request from clients with a message type of

1.3. ROS SERVICE 17

ros_service: :service: :Request and sends the response in the ros_service: :service
type. Finally, in order to offer the service, we need to include this line of
code:

ros: :ServiceServer service =
n.advertiseService("service", service_callback);

This code line instantiates a service called service, while the callback for
it is a function called service_callback.

Like in the previous example, start this service and try to handle it using
the commands provided by the ROS framework. Just add the compilation
directives in the CMakeLists.txt file:

add__executable(service server src/service_server.cpp)
target_link_libraries(service_server ${catkin_ LIBRARIES})

Then, compile with catkin_make command:

$ roscd
$ cd ..
$ catkin_make

Finally, after ran a roscore, start the service:

$ roscore
$ rosrun ros_service service_server

At this point, we can check that the service instantiated in this node is
active. Use the following command to inspect the service active in your
ROS system:

$ rosservice list

Output:

/rosout/get_loggers
/rosout/set_logger_level
/service
/service_server/get_loggers
/service_server/set_logger_level

You can also call this service using the following command:

$ rosservice call /service "in_: ’Call’"

out: "Received Here"

The command rosservice call takes into account the name of the service
to call and the list of arguments. In this case, it takes a string.
Let’s now create the service client node.

: :Response

18 1. STARTING WITH ROS PROGRAMMING (PART 1)

$ roscd ros_service/src
$ touch service_client.cpp

The following code calls the service declared in the previous example:

1 #include "ros/ros.h'

2 #include <iostream>

3 #include "ros_service/service.h"

4 #include <iostream>

5 #include <sstream>

6

7 using namespace std;

8

9 int main(int argc, char xxargv) {

10

11 ros::init (argc, argv, "service_client");
12 ros :: NodeHandle n;

13 ros :: Rate loop rate(10);

14 ros:: ServiceClient client =

15 n.serviceClient<ros_ service::service >("service");
16 while (ros::o0k()) {

17 ros_ service ::service srv;

18 std :: stringstream ss;

19 ss << "Sending from Here";

20 srv.request.in = ss.str();

21 if (client.call(srv)) {

22 cout << "From Client:

23 ['<< srv.request.in << "],

24 Server says [" <<

25 srv.response.out << "]" << endl;
26 }

27 else {

28 ROS_ERROR("Failed to call service");
29 return 1;

30 }

31 ros ::spinOmnce ();

32 loop_rate.sleep ();

33}

34 return O;

35 }

To create a service client of the service type, we can use the following
code line:

1 ros:: ServiceClient client =
2 n.serviceClient <ros_service :: service >("service ");

While, to send the service call to the server we can use the following line:

1 if (client.call(srv))

This line returns true if the service is successfully called, false otherwise.

G W N =

0 N O g W N

1.4. EXERCISE 19

Create custom messages

Similarly to the ROS service message (srv), you can create custom mes-
sages. ROS already provides a comprehensive set of messages to handle sev-
eral situation of robotic programming (i.e. sensor_msgs, geometry_msgs,
nav_msgs, etc. ..). However, in some situation could be useful to define your
own ROS messages. The message definitions are stored in a .msg file the
msg folder of your package. Let’s create a custom message in the ros_topic
package:

$ roscd ros_topic
$ mkdir msg && cd msg
$ touch demo.msg

In this message we want to group together a string and an integer:

string name
int32 data

When the ros_topic package was created, we hadn’t planned to add custom
message. For this reason, we have to manually add the message_generation

dependency in the CMakeLists.txt. Open this file adding themessage_generation

in the find_package command:

find__package (catkin REQUIRED COMPONENTS
roscpp
std__msgs
message_generation

)
And decomment the following line and add the custom message file:

add__message_ files(
FILES
demo . msg

)

generate_messages (
DEPENDENCIES
std__msgs

)

As usual, to use the added message, you have to compile the ros_topic
package.

1.4 Exercise

1. Parrot package: develop a ROS package with a publisher and a sub-
scriber. The publisher node accepts as input string or characters using
the keyboard and publish such data on a ROS topic. The subscriber
prints out the published data.

20 1. STARTING WITH ROS PROGRAMMING (PART 1)

e Test publisher and subscriber also using rqt and command line
ROS commands.

2. Fibonacci package: The Fibonacci Sequence is the series of numbers:
0o, 1, 1, 2, 3, 5, 8, 13, 21, 34, The next number is found
by adding up the two numbers before it. Develop a ROS Service taking
2 numbers (index, length) as input and returning a portion of the
fibonacci sequence:

e The first argument of the service represents the index of an ele-
ment along the fibonacci sequence:

f[o] = 0, £[1] =1, £[2] =1, £[3] = 2,

e The second argument represent the number of element to return
e Starting from the index element of the sequence, return the next
length element of the sequence.

Example:

Input: (8, 3), Output: 21, 34, 55
f[8] = 21, f[7] = 13 > f[9] = 21+13 = 34

3. Adder package: develop a ROS package that adds and publishes two
random numbers.

e Nodel: in an infinite loop generates two random float numbers
and publishes them on a Topic using a custom message

e Node2: subscribes to the topic of Nodel, sums the two numbers
and republishes the result on another topic using custom message
with three field:

— Field 1: first random number
— Field 2: second random number
— Field 3: result of the sum

	Starting with ROS programming
	Environment configuration
	Create a ROS package
	ROS Service
	Exercise

