Robotics Lab - Lecture 2

Robotics programming technologies
(Linux, c++, make & git)

JONATHAN CACACE

March 3, 2020

ii

Contents

|1 Robotics programming technologies|
[1.1 Linux Operating System|
1.1 TInstall Linuxl o000

[1.1.3 Basic Linux concepts|.
[1.2 Introduction to C++ programming|.
[1.2.1 Compilation using make|

iii

iv

CONTENTS

Preface

This document contains the lecture notes for the Robotics Lab class taken at
University of Naples Federico II for automation engineering master degree.
The aim of this course is to give an overview of the fundamental tools and
techniques used to program advanced robotics systems (both industrial and
mobile). After a brief introduction of the technologies commonly used to
program robots (e.g. Linux, c++, git), the Robot Operating System (ROS)
framework is introduced and deeply studied. Simulation software will help
the course attenders to implement and test state-of-art robotic algorithms
and their own robot control software.

In this lesson, an overview of the technologies used to program robots
is provided. In particular, this lesson will focus on an introduction to linux
basics, to c++ programming and its compilation. Finally, an overview of
version control software, with particular case of GIT is also provided.

CONTENTS

Robotics programming
technologies

Nowadays, there exist different setup to program robotic systems. Some
of these rely on proprietary languages developed by robot providers, like
KRL and sunrise for kuka industrial robots, or RoboDK for Universal Robots.
However, these languages don’t allow to develop intelligent robotic appli-
cation to perform complex tasks, but they are considered to be implement
cyclical motion in a completely known environment. Differently, sometimes
developers need to program robot considering different high level or low
level prospective. For this reason, to develop advanced robotic applications
in which the robot is able to plan new actions based on the state of its
operative environment, standard programming languages must be used. In
this lesson we mainly considered C++ because is fast and versatile, can be
used both for high level reasoning (geometrical reasoning, image elaboration,
etc ...) and for low level control. Before to recall some basic concepts on
c++, we briefly discuss some basic concepts and commands used in Linux.

1.1 Linux Operating System

Linux is a family of open source Unix-like operating systems based on the
Linux kernel, an operating system kernel free and open-source, monolithic
and Unix-like kernel, released on 1991. Typically different versions of Linux
are packaged into distributions. Nowadays, exist hundreds of linux distri-
butions usable on embedded, server and desktop devices. One of the most
popular linux distributions for desktop computers is called Ubuntu. Ubuntu
is an African sub-Saharan term meaning humanity or more specifically it is
philosophy: ’the belief in a universal bond of sharing that connects all hu-
manity‘ or 'I am because we are’. Ubuntu is released every six months, with
long-term support (LTS) releases every two years. The most recent long-
term support release at writing time is 18.04 LTS (Bionic Beaver), which is

3

4 1. ROBOTICS PROGRAMMING TECHNOLOGIES

supported until 2023 under public support.

Independently from the distributions, all versions o linux share a list of
commands invokable via the linux console (terminal). Be able to use linux
console for a robotics software developer is fundamental for several reasons.
First of all, typically robot based on Linux OS are not endowed of a graphical
interface or developers joint the robot remotely using the Secure Shell (ssh)
connection. In addition, a list of commands from the command line can be
extremely useful to properly configure the robotic system.

1.1.1 Install Linux

The convenient way to install linux is with multi boot options. This setup
allows to install multiple operating system on the same hard disk. Another
way to use linux is relying on Virtual Machine. This solution in our case
presents some disadvantages, mainly because of the requirements needed by
the simulation software.

1.1.2 Basic Linux commands

In this section, a list of recurrent important linux commands are reported.

e pwd: when you first open the terminal, you are in the home directory
of your user. To know which directory you are in, you can use the
“pwd” command. It gives us the absolute path, which means the path
that starts from the root.

e Is: use the Is command to know what files are in the directory you are
in. You can see all the hidden files by using the command Is -a.

e cd: Use the cd command to go to a directory. For example, if you
are in the home folder, and you want to go to the downloads folder,
then you can type in cd Downloads. Remember, this command is case
sensitive, and you have to type in the name of the folder exactly as it
is. To go back from a folder to the folder before that, you can type
“cd . . The two dots represent back.

e mkdir & rmdir: Use the mkdir command when you need to create a
folder or a directory. To delete a directory containing files, use rmdir.

e rm: Use the rm command to delete files and directories. Use "rm -r"
to delete just the directory. It deletes both the folder and the files it
contains when using only the rm command.

e touch: the touch command is used to create a file. It can be anything,
from an empty txt file to an empty zip file. For example, “touch
new.txt”.

1.1. LINUX OPERATING SYSTEM 5

e cp: Use the cp command to copy files through the command line. It
takes two arguments: The first is the location of the file to be copied,
the second is where to copy.

e mv: Use the mv command to move files through the command line.
We can also use the mv command to rename a file. For example, if we
want to rename the file “text” to “new”, we can use “mv text new”. It
takes the two arguments, just like the cp command.

e locate: the locate command is used to locate a file in a Linux sys-
tem. This command is useful when you don’t know where a file is
saved or the actual name of the file. Using the -i argument with the
command helps to ignore the case (it doesn’t matter if it is upper-
case or lowercase). So, if you want a file that has the word “hello”, it
gives the list of all the files in your Linux system containing the word
hello when you type in locate -i hello. If you remember two words,
you can separate them using an asterisk (*). For example, to locate
a file containing the words hello and this, you can use the command
locate -i *hello*this. In order to have an update representation of the
filesystem and be able to find even the newest files contained in your
machine you should insert the following command:

$ sudo updatedb

The first time this command could take a bit of time.

e echo: the echo command helps us move some data, usually text into
a file. For example, if you want to create a new text file or add to an
already made text file, you just need to type in, echo hello, my name
is alok » new.txt. You do not need to separate the spaces by using the
backward slash here, because we put in two triangular brackets when
we finish what we need to write.

e cat: use the cat command to display the contents of a file. It is usually
used to easily view programs.

e nano: nano is a text editors already installed in your Linux command
line. The nano command is a good text editor that denotes keywords
with color and can recognize most languages. It is one of the simplest
text editor usable via command line.

e sudo: a widely used command in the Linux command line, sudo stands
for SuperUser Do. So, if you want any command to be done with
administrative or root privileges, you can use the sudo command. For
example, if you want to edit a file like viz. alsa-base.conf, which needs
root permissions, you can use the command: sudo nano alsa-base.conf.

6 1. ROBOTICS PROGRAMMING TECHNOLOGIES

e chmod: use chmod to make a file executable and to change the permis-
sions granted to it in Linux. Imagine you have a python code named
numbers.py in your computer. You’ll need to run python numbers.py
every time you need to run it. Instead of that, when you make it exe-
cutable, you’ll just need to run numbers.py in the terminal to run the
file. To make a file executable, you can use the command chmod +x
numbers.py in this case. Another situation in which this command
is particularly useful is when your application needs to access to USB
devices. In such case the device should have executable privileges.

e ping: use ping to check your connection to a server.

e You can power off or reboot the computer by using the command sudo
halt and sudo reboot.

e You can use the clear command to clear the terminal if it gets filled
up with too many commands.

1.1.3 Basic Linux concepts

In this subsection we report some basic concepts common to all linux oper-
ating systems.

e Command auto completion: auto completion represents a fundamental
feature of linux console. In particular, TAB key can be used to fill up
in terminal. For example, You just need to type cd Doc and then TAB
and the terminal fills the rest up and makes it cd Documents.

o filesystem: most Linux systems use a standard layout for files so that
system resources and programs can be easily located. This layout
forms a directory tree, which starts at the / directory, also known as
the root directory. Directly underneath / are important subdirectories:
/bin, /etc, /dev, and /usr, among others. These directories in turn
contain other directories which contain system configuration files, pro-
grams, and so on. In particular, each user has a home directory, which
is the directory set aside for that user to store his or her files. A user
has completely control of its user space (/home/user). Differently, for
the higher level of the filesystem the operations must be performed
with the use of superuser privileges (sudo in ubuntu).

e .bashrc: the linux shell is called bash (Bourne Again SHell). It is a
command processor that typically runs in a text window where the user
types commands. Bash can also read and execute commands from a
file, called a shell script. Like all Unix shells, it supports piping, here
documents, command substitution, variables, and control structures
for condition-testing and iteration. When a new interactive linux shell

1.1. LINUX OPERATING SYSTEM 7

is open a series of configuration files are elaborated. In particular, bash
reads and executes /etc/bash.bashrc and then ~/.bashrc. For this
reason, all the system configuration that you want to automatically
load can be placed in the bashrc file. This file is placed in the home
directory of the user. in addition, it is a hidden file (in fact its name
starts with a dot): /home/user/.bashrc.

e Environment variables: in linux based systems environment variables
are a set of dynamic named values, stored within the system that are
used by applications launched in shells. In simple words, an environ-
ment variable is a variable with a name and an associated or a list of
values. Environment variables allow you to customize how the system
works and the behavior of the applications on the system. For exam-
ple, the environment variable can store information about the default
text editor or browser, the path to executable files, or the system lo-
cale and keyboard layout settings. In bash a variable can be set in the
following way:

$ export V=environment

While, to print the content of a variable you should refer to the variable
name using the $ character:

$ echo $V

In the following a list of commands used to handle environment vari-
ables are reported:

echo $VARIABLE #To display value of a variable

env #Displays all environment variables
VARIABLE_NAME=variable_value #Create a new variable
unset variable_value #Remove a variable

€@ H H P &BH

export Variable=value #To set value of an environment variable

e APT: to install new software a convenient way is to use the package
manager. In ubuntu (derived from debian) the package manager is
called APT (Advanced Packaging Tool). APT simplifies the process
of managing software on Unix-like computer systems by automating
the retrieval, configuration and installation of software packages, either
from precompiled files or by compiling source code. In order to install
a new software you should use the following syntax:

$ sudo apt-get install [PACKAGE NAME]

1. ROBOTICS PROGRAMMING TECHNOLOGIES

If the package exists in the apt repository, the list of dependencies
of such package will be also automatically installed. If you want to
check if a software is contained in the apt repository you could use the
following command:

$ apt-cache search [PACKAGE NAME]

Otherwise, if you know only initial part of the package you can used
the auto completion.

Other usage modes of apt and apt-get that facilitate updating installed
packages include:

— update is used to resynchronize the package index files from
their sources. The lists of available packages are fetched from
the location(s) specified in /etc/apt/sources.list. For example,
when using a Debian archive, this command retrieves and scans
the Packages.gz files, so that information about new and updated
packages is available.

— upgrade is used to install the newest versions of all packages
currently installed on the system from the sources enumerated
in /etc/apt/sources.list. Packages currently installed with new
versions available are retrieved and upgraded; under no circum-
stances are currently installed packages removed, or packages
not already installed retrieved and installed. New versions of
currently installed packages that cannot be upgraded without
changing the install status of another package will be left at their
current version.

In order to add additional software list to the apt repository you should
edit the files included in /etc/apt directory. In particular, on Ubuntu
and all other Debian based distributions, the apt software reposito-
ries are defined in the /etc/apt/sources.list file or in separate files
under the /etc/apt/sources.list.d/ directory. If you already in-
stalled ROS in your system, you should know that the first instruction
of ROS tutorial is the following:

$ sudo sh -c ’echo "deb http://packages.ros.org/ros/ubuntu
$(1sb_release -sc)
main" > /etc/apt/sources.list.d/ros-latest.list’

This line uses the echo command to create a file called ros-latest.list
filled with the address of the repository of ROS packages. At this point,
the apt command should be able to see the packages contained in the
ROS repository. More information about how to add other repository
to APT will be provided when the installation of ROS is discussed.

© 0w N Ot s W N

e e =
=W N = O

1.2. INTRODUCTION TO C++ PROGRAMMING 9

1.2 Introduction to C++4 programming

C++ is a general-purpose programming language created as an extension of
the C programming language. One of C++’s strengths is that it can be used
to write programs for nearly any processor. It is a high-level language: when
you write a program in it, the shorthand are sufficiently expressive that you
don’t need to worry about the details of processor instructions. In addition,
C++ does give access to some lower-level functionality than other languages
(e.g. memory addresses). For this reason, C++ can be used both for high
level robot programming (reasoning, planning and so on) and for robot low
level control. The source code of a C++ program is written in a text file.
The process in which a program goes from text files to processor instructions
is depicted in Fig. In particular, object files are intermediate files that
represent an incomplete copy of the program: each source file only expresses
a piece of the program, so when it is compiled into an object file, the object
file has some markers indicating which missing pieces it depends on. The
linker takes those object files and the compiled libraries of predefined code
that they rely on, fills in all the gaps, and spits out the final program, which
can then be run by the operating system. The compiler and linker are just
regular programs. The step in the compilation process in which the compiler
reads the file is called parsing. In C++, all these steps are performed ahead
of time, before you start running a program. In some languages, they are
done during the execution process, which takes time. This is one of the
reasons C++ code runs far faster than code in many more recent languages.

/%

x First C++ program that says hello (hello.cpp)
*/

#include <iostream> //10 operations

using namespace std;

// Program entry point
int main() {
// Say Hello
cout << "hello, world" << endl;
// Terminate main ()
return O;
} // End of main function

The classical form of a single process C++ program is reported in the above

Figure 1.1: C++ compilation process

Compiler

Executable”ﬂb(Program in MemoryU

Compiler Libraries

10 1. ROBOTICS PROGRAMMING TECHNOLOGIES

algorithm. This is nothing more than a simple program that prints the string
"hello, world". In such code, cout function print out some piece of text to the
screen, while to specify e certain context the namespace keyword is used: In
C++, identifiers can be defined within a context called a namespace. When
we want to access an identifier defined in a namespace, we tell the compiler
to look for it in that namespace using the scope resolution operator (::).
Here, we’re telling the compiler to look for cout in the std namespace, in
which many standard C++ identifiers are defined. If we do this, we can
omit the std::prefix when writing cout.

C++ syntax is very similar to C and other compiled languages. In
this section, we highlight some useful functionalities of C++ using external
libraries.

Pointers

After declared a variable in C++, the computer associates its name with
a particular location in memory where the value of the variable is stored.
When in the code such variable is referred, the computer firstly look up
the address the correspond to the variable name, then go to the location in
memory to retrieve the value it contains.

Mainly, C4++ allows us to perform these steps independently:

e &x evaluates to the address of x in memory

o *(&x)takes the address of x and dereferences it — it retrieves the value
at that location in memory. *(&x)thus evaluates to the same thing as
X.

Pointers allow us to manipulate data much more flexibly; manipulating the
memory addresses of data can be more efficient than manipulating the data
itself. In particular in C++ pointers are particularly useful to:

e Pass-by-reference variables is more efficient.

e Manipulate complex data structures efficiently, even if their data is
scattered in different memory locations.

e Return multiple values from a single function.

To declare a pointer variable named ptr that points to an integer variable
named x:

int *ptr = &x;

int *ptr declares the pointer to an integer value, which we are initial-
izing to the address of x. We can have pointers to values of any type.

The following block of code shows a simple example in which pointers
are used to pass variables by reference.

=W NN =

© 0 N O »

1
2
3
4
5
6

7
8

1.2. INTRODUCTION TO C++ PROGRAMMING 11

void squareByPtr(int xnumPtr){
snumPtr= snumPtrxsxnumPtr;

}

int main() {
int x=5;
squareByPtr(&x);
std::cout << x << std::endl; //Prints 25

}

The usage of the * and & operators with pointers/references can be
confusing. The * operator is used in two different ways: when declaring a
pointer, * is placed before the variable name to indicate that the variable
being declared is a pointer - say, a pointer to an int or char, not an int or
char value. Then, when using a pointer that has been set to point to some
value, *is placed before the pointer name to dereference it, to access or set
the value it points to. A similar distinction exists for &, which can be used
either to indicate a reference datatype (int &x;), or to take the address of
a variable (int *ptr=&x;).

Smart pointers (Shared pointers)

A smart pointer represents a class of objects aiming at simplify the usage of
pointers. In particular, smart pointers prevent most situations of memory
leaks by making the memory deallocation automatic and providing feature
like automatic memory management or bounds checking. Such features are
intended to reduce bugs caused by the misuse of pointers, while retaining
efficiency.

In C++4, a smart pointer is implemented as a template class that mim-
ics, by means of operator overloading, the behaviors of a traditional (raw)
pointer, (e.g. dereferencing, assignment) while providing additional memory
management features.

Among different features of smart pointers, in this document we are
interested in the std: :shared_ptr. C++11 introduces std: :shared_ptr,
defined in the header <memory>. A shared_ptr is a container for a raw
pointer. It maintains reference counting ownership of its contained pointer
in cooperation with all copies of the shared_ptr. An object referenced by
the contained raw pointer will be destroyed when and only when all copies
of the shared_ptr have been destroyed.

//Allocates 1 integer and initialize it with value 5.
std ::shared ptr<int> pO(new int (5));

//Valid, allocates 5 integers.

std ::shared ptr<int[]> pl(new int[5]);

//Both now own the memory.

std ::shared_ptr<int[]> p2 = pl;

//Memory still exists, due to p2.

pl.reset ();

10

N O Otk W N

© 0 N D Ok W N

12 1. ROBOTICS PROGRAMMING TECHNOLOGIES

//Deletes the memory, since no one else owns the memory.
p2.reset ();

One important feature of shared_ptr is that multiple threads can safely
simultaneously access different shared_ptr that point to the same object.
In particular, shared_ptr is considered when multiple owners should access
to the same object in memory. A shared_ptr object effectively holds a
pointer to the resource that it owns or holds a null pointer. A resource can
be owned by more than one shared_ptr object; when the last shared_ptr
object that owns a particular resource is destroyed, the resource is freed.

Classes

A class represents a user-defined data type which groups together related
pieces of information. If you consider a geometric vector, a vector consists
of 2 points: a start and a finish, each point itself has an x and y coordinate.
We can create the following class to represent different type of vectors:

class Vector {
private:
double xStart;
double xEnd;
double yStart;
double yEnd;

}s
Of course, similar results can be obtained using a simple data structure. To
improve the class functionalities we should implement some methods in the

vector class. Some functions are closely associated with a particular class,
like the calculation of the norm of a vector:

class Vector {
public:

float get_norm();
private:

double xStart;
double xEnd;
double yStart;
double yEnd;

}s

In addition, a class need a constructor: a method that is called when an
instance is created. In our case, we can consider to initialize the member of
the class (the points of the vector) when an instance of the class is created:

class Vector {
public:
Vector(float xstart_ , float xend_,
float ystart_, float yend_);
float get_norm();
private:
double xStart;

10
11

© W N s W N

e e e e i e =
© 00 N ks W NN = O

1.2. INTRODUCTION TO C++ PROGRAMMING 13

double xEnd;
double yStart;
double yEnd;

}s

In this way, to initialize a new vector and get its norm, we must implement
the functions of its class:
Vector:: Vector(float xstart_, float xend_,
float ystart_, float yend_) {
xStart = xstart_ ;
xEnd = xend_ ;
yStart = ystart_ ;
yEnd = yend__;

float Vector::get norm() {
return sqrt (pow((xEnd — xStart),2) + pow((yEnd — yStart),2))

}

int main() {
Vector v(0, 0, 2, 2);
std ::cout << v.get_norm () << std::endl;
return 0;

}

As for the class modifiers, we can choose three different type for the class
members:

e public: members are accessible from outside the class

e private: members cannot be accessed (or viewed) from outside the
class

e protected: members cannot be accessed from outside the class, how-
ever, they can be accessed in inherited classes.

Data hiding is a software development technique specifically used in object-
oriented programming to hide internal object details (data members). Data
hiding ensures exclusive data access to class members and protects object
integrity by preventing unintended or intended changes. To implement data
hiding you can follow two simple rules: make all the data members private
and create public setter and getter functions for each data member in such
a way that the set function set the value of data member and get function
get the value of data member.

void Vector::set_xend(float xend) {
xEnd = xend;

}

float Vector::get xend() {

N O A W NN

14 1. ROBOTICS PROGRAMMING TECHNOLOGIES

return xEnd;

}

1.2.1 Compilation using make

To generate executable files we need to compile one or more source files. One
of the most common way is to use the GNU make program and (under linux)
the GCC compiler. GCC, formerly for "GNU C Compiler", has grown over
times to support many languages such as C (gcc), C++ (g++), Objective-C,
Objective-C++, Java (gcj), etc. ... It is now referred to as "GNU Compiler
Collection". In this section we will discuss different tools to compile C++
programs. In particular, we introduce the command line tool of gcc to
compile programs, then we discuss the make utility used to automatize the
compilation process.

GCC

The GNU C and C++ compiler are called gcc and g++, respectively. Con-
sidering the following block of code:

// hello.c

#include <stdio.h>

int main() {
printf ("Hello, world!\n");
return 0;

}

To compile the hello.c:
$ gcc hello.c

This command generates an executable that by default under linux OS is
called a.out. This file can be executed from unix console using the following
commands:

$ chmod a+x a.out
$./a.out

To specify the output filename, use -o option:
$ gcc -o hello.exe hello.c

Consider that gcc and g++ share the same syntax, so to compile a C++
program, just used g++ instead of gcc.

In case your program has multiple source files, like fl.cpp and f2.ccp,
you could compile them in a single command:

$ g++ -o program fl.cpp f2.cpp

1.2. INTRODUCTION TO C++ PROGRAMMING 15

with the option -c¢ you can compile multiple different object source files
separately into object file, and link them together in the later stage. In this
case, changes in one file does not require re-compilation of the other files:

$ g+t+ —c f1l.cpp
$ g++ -c f2.cpp
$ g++ -o program fl.o f2.0

An important element of program compilation is represented by the shared
and static libraries that can be used in your source code. In particular, a
library is a collection of pre-compiled object files that can be linked into
your programs via the linker. Examples are the system functions such as
printf() and sqrt(). There are two types of external libraries: static library
and shared library.

e A static library has file extension of ".a" (archive file). When your
program is linked against a static library, the machine code of external
functions used in your program is copied into the executable.

e A shared library has file extension of ".so" (shared objects). When your
program is linked against a shared library, only a small table is created
in the executable. Before the executable starts running, the operating
system loads the machine code needed for the external functions - a
process known as dynamic linking. Dynamic linking makes executable
files smaller and saves disk space, because one copy of a library can be
shared between multiple programs. The shared library codes can be
upgraded without the need to recompile your program.

When compiling the program, the compiler needs the header files to compile
the source codes; the linker needs the libraries to resolve external references
from other object files or libraries. This could be a tedious step because
the compiler and linker will not find the headers/libraries unless you set
the appropriate options. For each of the headers used in your source (via
#include directives), the compiler searches the so-called include-paths for
these headers. The include-paths are specified via -Idir option (or environ-
ment variable CPATH). Since the header’s filename is known (e.g., iostream.h,
stdio.h), the compiler only needs the directories.

As for the linker, it searches the so-called library-paths for libraries
needed to link the program into an executable. The library-path is speci-
fied via -Ldir option (or environment variable LIBRARY_PATH). In addition,
you also have to specify the library name. In Unix, the library libxxx.a is
specified via -lxxx option. In this context, the linker needs to know both
the directories as well as the library names. Hence, two options need to be
specified. To summarize, GCC uses the following environment variables:

e PATH: For searching the executables and run-time shared libraries (.so0).

© 0 N O Ok W N

-
o

16 1. ROBOTICS PROGRAMMING TECHNOLOGIES

e CPATH: For searching the include-paths for headers. It is searched after

paths specified in -I<dir> options. C_INCLUDE_PATH and CPLUS_INCLUDE_PATH

can be used to specify C and C++ headers if the particular language
was indicated in pre-processing.

e LIBRARY_PATH: For searching library-paths for link libraries. It is
searched after paths specified in -L<dir> options.

Make

The make utility automates building process of executable from source code.
make uses a so-called makefile, which contains rules on how to generate
executable. Let’s see a first example to build the hello.c program into
executable using make utility.

Create the following file named "makefile" (without any file extension),
which contains rules to build the executable, and save in the same directory
as the source file.

all: hello

hello: hello.o
gcc —o hello hello.o

hello.o: hello.c
gcc —c hello.c

clean:
rm hello.o hello

To compile the program, run the make command in the same directory of
the makefile.

$ make

makefile is typically used when you have a complex compilation structure for
your program (multiple sources, libraries and so on). For this reason, several
variables can be used to simply the content of the makefile. Automatic
variables are set by make after a rule is matched. There include:

e $0: the target filename.

e $x*: the target filename without the file extension.

$<: the first prerequisite filename.

$~: the filenames of all the prerequisites, separated by spaces, discard
duplicates.

$+: similar to $~, but includes duplicates.

1
2
3

© 0 N O Utk

1
2
3
4
5
6
7
8
9

10
11

1.2. INTRODUCTION TO C++ PROGRAMMING 17

e $7: the names of all prerequisites that are newer than the target,
separated by spaces.

The previous makefile can be re-written as:
all: hello

$@ matches the target;

$< matches the first dependent
hello: hello.o

gce —o $Q@ $<

hello.o: hello.c
gce —c $<

clean:
rm hello.o hello

CMake

Using make to compile complex and multi-platform projects could be not
an easy task. For this reason, a generator of build system is often used to
simplify the work of a software developer. The most famous generator of
build-systems and also the one adopted by ROS is called CMake. CMake is
a cross-platform free and open-source software tool for managing the build
process of software using a compiler-independent method. It is used in con-
junction with native build environments such as Make, Qt Creator, Ninja,
Apple’s Xcode, and Microsoft Visual Studio.

The build process with CMake takes place in two stages. Simple configu-
ration files placed in each source directory (called CMakeLists.txt files) are
used to generate standard build files (e.g., makefiles) which are used in the
usual way. Another nice feature of CMake is that it generates a cache file that
is designed to be used with a graphical editor. For example, when CMake
runs, it locates include files, libraries, and executables, and may encounter
optional build directives. This information is gathered into the cache, which
may be changed by the user prior to the generation of the native build files.

Considering hello.c source file of the previous example, to compile it
in CMake you should create a tzt file named CMakeLists. txt:

Specify the minimum version for CMake
cmake_minimum_ required (VERSION 2.8)
Project s name

project (hello)

Set the output folder where your program will be created
set (CMAKE_BINARY_DIR ${CMAKE_SOURCE_DIR}/bin)

set (EXECUTABLE OUTPUT PATH ${CMAKE BINARY DIR})

set (LIBRARY_OUTPUT PATH ${CMAKE BINARY_ DIR})

18 1. ROBOTICS PROGRAMMING TECHNOLOGIES

12
13 # The following folder will be included
14 include_directories ("${PROJECT SOURCE DIR}")

In this file we used the following global variables:

e CMAKE_BINARY_DIR: if you are building in-source, this is the same as
CMAKE_SOURCE_DIR, otherwise this is the top level directory of your
build tree

e CMAKE_SOURCE_DIR: this is the directory, from which cmake was started,
i.e. the top level source directory

e EXECUTABLE_QUTPUT_PATH: set this variable to specify a common place
where CMake should put all executable files (instead of CMAKE_CURRENT_BINARY_DIR)

e EXECUTABLE_OUTPUT_PATH: set this variable to specify a common place
where CMake should put all executable files (instead of CMAKE_CURRENT _BINARY_DIR),
for example SET (EXECUTABLE_OUTPUT_PATH ${PROJECT_BINARY DIR}/bin).
LIBRARY_OUTPUT_PATH: set this variable to specify a common place
where CMake should put all libraries

e PROJECT_SOURCE_DIR: contains the full path to the root of your project
source directory, i.e. to the nearest directory where CMakeLists.txt
contains the PROJECT () command.

Finally, to compile the source code you should add this final line to your
CMakelLists.txt:

1 add_executable(hello ${PROJECT SOURCE DIR}/hello.c)

Now you are ready to compile the hello.c source file. At this point, you
will have the folder with the following files:

$ 1s
$ CMakelLists.txt hello.c

The common way to compile with CMake tools, is to create a temporary
folder in which all the compilation file are put. In this way, you can delete
the temporary compilation file to share the entire folder of your project:

$ mkdir build && cd build
$ cmake ..
$ make

Sometimes, you should need to install custom libraries in your system. This
is particularly useful when you want to use functions and headers in different
source files. In CMake the install command is used. This command gener-
ates installation rules for a project. Rules specified by calls to this command
within a source directory are executed in order during installation.

G W N =

1.3. GIT 19

#libs

add_library (mylib SHARED ${LIB_SRC})

#install

install (TARGETS mylib DESTINATION /usr/lib)

install (FILES ${LIB HEADER} DESTINATION /usr/include/mylib)

In this case, after the make command, to perform the install step you should
type the following command:

$ sudo make install

1.3 git

Git is a distributed version-control system for tracking changes in source
code during software development. It is designed for coordinating work
among programmers, but it can be used to track changes in any set of files.
Today, Git is the most widely used modern version control system in the
world.

Version control is a system that records changes to a file or set of files
over time so that you can recall specific versions later. So ideally, we can
place any file in the computer on version control. A Version Control System
(VCS) allows you to revert files back to a previous state, revert the entire
project back to a previous state, review changes made over time, see who
last modified something that might be causing a problem, who introduced
an issue and when, and more. Using a VCS also means that if you screw
things up or lose files, you can generally recover easily. The most famous

Working
Directory

Staging
Area

Local Repo
(HEAD)

Remote Repo
(MASTER)

Git Add

Git Commit

Git Push

Git Merge

Git Fetch

‘ Git Pull |

Figure 1.2: Git workflow

implementation of Git is github (www.github.com). In this section we intro-
duce the basic concept of Git. First of all, the Remote Repository is where
you send your changes when you want to share them with other people, and
where you get their changes from, while the Development Environment is

www.github.com

20

1. ROBOTICS PROGRAMMING TECHNOLOGIES

what you have on your local machine: the three parts of it are your Work-
ing Directory, the Staging Area and the Local Repository. The workflow
of git among these directories is shown in Fig. First of all, what is a
repository? A repository is nothing but a collection of source code. If you
consider a file in your Working Directory, it can be in three possible states.
The following commands are used to manage the workflow:

git add is a command used to add a file that is in the working direc-
tory to the staging area.

git commit is a command used to add all files that are staged to the
local repository.

git push is a command used to add all committed files in the local
repository to the remote repository. So in the remote repository, all
files and changes will be visible to anyone with access to the remote
repository.

git fetch is a command used to get files from the remote repository
to the local repository but not into the working directory.

git merge is a command used to get the files from the local repository
into the working directory.

git pull is command used to get files from the remote repository
directly into the working directory. It is equivalent to a git fetch and
a git merge .

As for the main commands to start with git, you can follow these commands:

Create a new repository:
$ git init

Checkout a repository: create a working copy of a local repository by
running the command

$ git clone /path/to/repository

You can propose changes (add it to the Index) using:
$ git add <filename> or git add *

To actually commit these changes use:

$ git commit -m "Commit message"

1.3. GIT 21

e Your changes are now in the HEAD of your local working copy. To send
those changes to your remote repository, execute:

$ git push origin master

Change master to whatever branch you want to push your changes to.

e If you have not cloned an existing repository and want to connect your
repository to a remote server, you need to add it with:

$ git remote add origin <server>

e branching: branches are used to develop features isolated from each
other. The master branch is the "default" branch when you create a
repository. Use other branches for development and merge them back
to the master branch upon completion. To create a new branch named
branch and switch to it using:

$ git checkout -b branch
To switch back to master

$ git checkout master
And delete the branch again
$ git branch -d branch

A branch is not available to others unless you push the branch to your
remote repository

$git push origin <branch>

e To update your local repository to the newest commit and fetch and
merge remote changes in your working directory, execute:

$ git pull

while, to merge another branch into your active branch (e.g. master),
use:

$ git merge <branch>

22 1. ROBOTICS PROGRAMMING TECHNOLOGIES

Typically, a repository can be private or public. In the first case the owner
and the developers of the project are the solely ones that can see the project
and download its source code. In this context, you need to authenticate
during the clone operations. This can be done in two different ways: with
https authentication: just inserting user name and password of your account
or using SSH authentication. Using the SSH protocol, you can connect and
authenticate to remote servers and services. After you've checked for existing
SSH keys, you can generate a new SSH key to use for authentication, then
add it to the ssh-agent. To configure your GitHub account to use your new
(or existing) SSH key, you’ll also need to add it to your GitHub account.

	Robotics programming technologies
	Linux Operating System
	Install Linux
	Basic Linux commands
	Basic Linux concepts

	Introduction to C++ programming
	Compilation using make

	git

