Robotics Lab - Lecture 1

Introduction to Robot Operating System
(ROS)

JONATHAN CACACE

February 28, 2020

ii

Contents

1 Robot Operating System
1.0.1 History of ROS L.
1.0.2 ROS Distributions
1.0.3 Robot Operating System

iii

iv

CONTENTS

Preface

This document contains the lecture notes for the Robotics Lab class taken at
University of Naples Federico II for automation engineering master degree.
The aim of this course is to give an overview of the fundamental tools and
techniques used to program advanced robotics systems (both industrial and
mobile). After a brief introduction of the technologies commonly used to
program robots (e.g. Linux, c++, git), the Robot Operating System (ROS)
framework is introduced and deeply studied. Simulation software will help
the course attenders to implement and test state-of-art robotic algorithms
and their own robot control software.

In this lesson, the Robot Operating System (ROS) is introduced in order
to provide an initial knowledge of its core underlying concepts.

CONTENTS

Robot Operating System

Robot Operating System (ROS) represents a flexible framework, providing
various tools and libraries to write robotic software. It offers several powerful
features such as message passing, distributing computing, code reusing, and
implementation of state-of-the-art algorithms for robotic applications.

1.0.1 History of ROS

The first version of ROS was release in 2007 by Willow Garage, a robotics
research laboratory located in California. In that year, Willow Garage was
developing PR2 robot (see Fig.1.1), one of the first robot running ROS as
programming framework.

ROS was born as an open source software and several developers outside
Willow Garage participated to its development. One of the main reason
motivating the development of ROS was to simplify the role of robotic pro-
grammers. In particular, robotic applications are typically composed by
similar part of software. The most common problem of robotics at the time
was that they spent too much time to re-implement the software infras-
tructure required to build complex robotics algorithms (basically, drivers to
the sensors and actuators, and communications between different programs
inside the same robot) and too little time dedicated to build intelligent
robotics programs that were based on that infrastructure. For this reason,
to overcome this problem ROS offers different features, like an easy process
communication, code reuse and software modularity. These features made
ROS particularly suitable for pr2 programming since it was composed by
several heterogeneous sensors (e.g. sonar, lidars, mobile base, etc...) and
hardware components. Nowadays ROS is managed by OSRF' (Open Source
Robotic Foundation) and it is released under BSD License.

Today, ROS represents the standard for robot programming and it is
already integrated in many robots and used by many universities and com-
panies.

4 1. ROBOT OPERATING SYSTEM

Figure 1.1: PR2 Willow Garage robot. One of the first ROS-enabled robot.

1.0.2 ROS Distributions

ROS updates are released with new ROS distributions. A new distribution
of ROS is composed by an updated version of its core software and a set of
new /updated ROS packages. ROS follows the same release cycle of Ubuntu
Operating System: a new version of ROS is released every six months. Typ-
ically, for each Ubuntu LTS (Long Time Support) version, an LTS version
of ROS is released. LTS stands for Long Term Support and means that the
released software will be maintained for long period time (5 year in case
of ROS and Ubuntu). The current LTS version of ROS at writing time is
Melodic Morenia, and it’s supported by Ubuntu 18.04. The list of recent
ROS distribution is shown in Fig. 1.2.

1.0.3 Robot Operating System

ROS is an open-source, meta-operating system for your robot. It provides
the services you would expect from an operating system, including hard-
ware abstraction, low-level device control, implementation of commonly-
used functionality, message-passing between processes and package manage-
ment. It also provides tools and libraries for building, writing and running
code across multiple computers. Actually, the correct definition for ROS is a
robotic middleware, a software that connects different software components
or applications, as shown in Fig. 1.3.

ROS officially runs on Unix-based platform. Some experimental ver-
sions have been released for Windows and MacOS. The suggested version
for Linux is Ubuntu. Before to discuss the features and working principle
of ROS, let’s take an overview of the main elements of a ROS software.
The computation in ROS is done using a network of processes called ROS

Tuturtle, turtle in

Distro Release date Poster EOL date
tutorial
U =
ROS Noetic Ninjemys May, 2020 (planned, see Upcoming TBA TEA May, 2025
Releases) (planned)

Figure 1.2: Recent ROS release.

Operating
system

Middleware

Application
s

Figure 1.3: Middleware concept.

nodes. This computation network along with additional functionalities can
be called computation graph. The main concepts in ROS computation graph
are Nodes, Master, Parameter server, Messages, Topics, Services, and Bags.
Each concept in the graph contributes in different ways. Let’s focus on the
two main elements that are the nodes and the master:

e Nodes: Nodes are the processes that perform computation (the ex-
ecutable). Each ROS node is written using ROS client libraries im-
plementing different ROS functionalities, such as the communication
methods between nodes, which is particularly useful when different
nodes of our robot must exchange information between them. Using
the ROS communication methods, they can communicate with each
other and exchange data. One of the aims of ROS nodes is to build
simple processes rather than a large process with all the functionality
(modularity).

6 1. ROBOT OPERATING SYSTEM

e Master: The ROS Master is a special ROS node that provide the
name registration and lookup to the rest of the nodes. Nodes will
not be able to find each other, exchange messages, or invoke services
without a ROS Master. In a distributed system, we should run the
master on one computer, and other remote nodes can find each other
by communicating with this master.

The typical structure of ROS applications is shown in Fig. 1.4. In particular,
in each ROS system only one Master node can be active. All the other nodes
exchange information between them thanks to the ROS master. In practice,
a ROS node is nothing more that a program written by developers in one of
the supported programming languages. Currently the supported languages
are C+4, Python, Matlab and Java. The ROS functionalities in all the
programming languages are the same. The ROS Master is much like a DNS

/—DE
=

Nods1)

vt
ROS Maste- V
>

Figure 1.4: ROS application structure.

server, associating unique names and IDs to ROS elements active in our
system. When a new node is launched in the ROS system, it will start
looking for the ROS Master and register the name of the node in it. So, the
ROS Master handles the details of all the nodes currently running on the
ROS system.

Now that the basic idea of ROS has been discussed, let’s start to better
detail its components.

The elements of ROS are summarized in Fig. 1.5 and are described in
the following:

e Plumbing: ROS allows communication between processes (nodes).
In particular, it provides publish-subscribe messaging infrastructure
designed to support the quick and easy construction of distributed
(local and remote) computing systems. For example, consider that
your application uses data from a camera, you can use the ROS node
deployed by the vendor of your camera to use the data in your own
application.

e Tools: ROS provides an extensive set of tools to configure, manage,
debug, visualize data, log and test your robotic application.

e Capabilities: ROS provides a broad collection of libraries that im-
plement useful robot functionalities, like manipulation, control, and
perception. In addition, ROS can be connected to other external soft-
ware like OpenCv, PCL, and so on, thanks to proper wrappers (i.e.
developers can avoid to re-invent the wheel).

e Ecosystem: ROS is supported and improved by a large community,
with a strong focus on integration and documentation. On ROS web-
page: ros.org you can find basic and advanced tutorial to learn how
to program in ROS, while di Q&A website (answers.ros.org) allow
you to directly ask you solution for your own problems (and contains
thousand of question already answered).

+ + &
Plumbing Tools Capabilities Ecosystem
* Process = Simulation = Control = Package organization
management = Visualization = Planning = Software distribution
* Inter-process = Graphical user = Perception * Documentation
communication interface = Mapping = Tutorials
* Device drivers = Data logging = Manipulation

Figure 1.5: ROS components.

At this point we are ready to discuss the philosophy of ROS.

The philosophy of ROS is that you have several individual programs
(modules) implemented in your robotic system (these programs can be lo-
cated on the same machine or distributed over the network) and are able
to communicate each other using defined API like ROS messages, services
and others. Each module can be written in any preferred programming
language supported by ROS (at current stage: C++, Python, Matlab and
Java). ROS is a free software and its core is open source.

Following this philosophy you can be easily able to design modular soft-
ware with several independent interchangeable modules solely responsible of
a small task in the overall software. The advantages the modularity in your
code are many. First of all, debug small part of code and functionalities
is easier. In addition, will be more easy update your software substituting
only the legacy part of your software.

Let’s discuss an example of a simple robotic application programmed
with ROS. We can consider the navigation of a mobile robot that have to

8 1. ROBOT OPERATING SYSTEM

track and follow a given visual target. Such application can be quite com-
plex to program from scratch and can be composed by several modules, as
depicted in Fig. 1.6. In this context, we can classify three application layers.
One responsible to handle robot sensors, like the vision sensor (Camera),
the laser scanner (Lidar) and the Encoders of the wheels. The second layer
instead, is responsible of the robot navigation. To perform such task, the
robot must be able to Localize itself into the environment, to Map the obsta-
cles and to generate a control strategy to accomplish a given task considering
sensor data. Finally, the lower level of your application consists in the in-
tegration with the hardware of the robot. Thanks to the large number of
versatile ROS modules the developers can concentrate on the programming
of the control algorithm. In fact, several sensors are already supported by
ROS, like standard usb cameras, depth sensor (from kinect, asus or intel),
laser scanner and so on. Similarly, state-of-art mapping and localization
algorithms are already deployed to receive the data from the sensors. One
important element of this software architecture is that to exchange informa-
tion between multiple modules (plumbing) in ROS a set of standard messages
is used. In this context, another cause for reflection regards the maintain-
ability of the code. In fact, update or change sensors or piece of codes in
this architecture is very easy since the communication interface between the
modules will remain the same.

Sensor-integration

/—Lidar \\3—

g —

/ \{ Encoders

.

/
PR o2
Mégoing — BEET. Contro
PPIS_J . Aigorithm

HW-integration =
Wheels
(\/ driiel__/\"
T T
¢~ Motien

\ﬂ__ controllla:_/

High and low level planning
Localization \;

Figure 1.6: Example of ROS node in a robotic mobile navigation task.

Now, let’s talk more concretely about ROS software infrastructure start-
ing with the message-passing. In the following, two kind of communication
protocols are described: the publish-subscribe and services.

Publish-subscribe

Two processes (ROS Nodes) can communicate in different ways. The first
communication protocol discussed here is an asynchronous communication
protocol based on the publish/subscribe paradigm in which a process streams
a series of data that can be read by one or more processes. This communica-
tion relies on an entity called topic. In particular, each message in ROS is
transported using named buses called topics. When a node sends a message
through a topic, then we can say the node is publishing a topic, while when
a node receives a message through a topic, then we can say that the node
is subscribing to a topic. The publishing node and subscribing node are not
aware of each other’s existence, in fact we can even subscribe a topic that
might not have any publisher. In short, the production of information and
consumption of it are decoupled. The publish/subscribing communication
is described in Fig. 1.7. In this context, the publisher and subscriber nodes
register to the ROS Master. The publisher node creates a topic specifying its
name that must be unique in the ROS system and the type of the message
to publish. Differently, the subscriber node request the data from the topic
as long as it specifies the correct message type. The ROS publish/subscribe
communication protocol is useful especially when a node must share a con-
tinuous stream of information. For example, a node that must grab data
from a camera sensor should broadcast the sequence of the images taken
from the sensor using a ROS publisher. In this case we are not interested
in the of the communication bridge.

ROS Messages

ROS communication relies on a set of standard and custom data structures
called ROS messages. Datatypes are described using a simplified message
description language called ROS messages. These datatype descriptions can
be used to generate source code for the appropriate message type in different
target languages. The message definition consists in a typical data structure
composed by two main types: fields and constants. The field is split into field
types and field names. The field type is the data type of the transmitting
message and field name is the name of it. The constants define a constant
value in the message file. In the following, an example of message definition
to share the pose (position and orientation) of the robot is shown. It is a
geometry_msgs: :PoseStamped message.

std_msgs/Header header
uint32 seq
time stamp
string frame_ id
geometry_msgs/Pose pose
geometry__msgs/Point position

10

11

12

13

14

10

Registration

ROS Master

Node 1:
publisher

1. ROBOT OPERATING SYSTEM

Registration

Data are received on
asynchronous
callbacks

Node 2:
subscriber

Subscribe

e [' ’:\dditional

<topic_name>
<message_type>

fubsaribers

Figure 1.7: ROS publish/subscribe protocol.

float64 x
float64 y
float64 =z

geometry__msgs/Quaternion orientation

float64
float64
float64
float64

X

y
v/
W

This example represents the definiti
first part of the message is present in

on of a structured data to stream. The
several ROS messages and represents an

header containing information about the publishing time of the message and
its reference frame (i.e. the fixed or dynamic reference frame with respect
to the pose of the object is specified). The rest of the message contains
information about the 6D position of the robot. As you can easily see, the
structure of the message is composed using basic data types (string, float
and so on). Table 1.1 shows some of the built-in field types that we can use

in our message.

11

Registration Registration

ROS Master

— Request I
Node 1: e o
Service S :
provider Response ien

<service_name=>
<service_type>

Figure 1.8: ROS service communication.

[Primitive type [Serialization [C++ [Python
bool(1) Unsigned 8-bit int uint8_ t(2) bool
int8 Signed 8-bit int int8_t int
uint8 Unsigned 8-bit int uint8__t int (3)
intl6 Signed 16-bit int intl6_t int
uint16 Unsigned 16-bit int uintl6_t int
int32 Signed 32-bit int int32_t int
uint32 Unsigned 32-bit int uint32_t int
int64 Signed 64-bit int int64_t long
uint64 Unsigned 64-bit int uint64__t long
float32 32-bit IEEE float float float
float64 64-bit IEEE float double float
string ascii string(4) std::string string
time secs/nsecs unsigned 32-bit ints ros::Time rospy.Time
duration secs/nsecs signed 32-bit ints rospy.Time ros::Duration rospy.Duration

Table 1.1: Built-in type for ROS messages

ROS Services

ROS also supports a synchronous communication protocol: ROS services.
ROS Services establish a request/response communication between nodes.
One node will send a request and wait until it gets a response from the other.
Similar to the message definitions we have to define the service definition.
A service description language is used to define the ROS service types.

An example of service description format is as follows:

#Request message type
string str
#Response message type
string str

The first section is the message type of the request that is separated by
— — — and in the next section is the message type of the response. In this
example, both Request and Response are strings. Of course, the definition of

12 1. ROBOT OPERATING SYSTEM

a service could contain a structured ROS message (like the one used for the
pose of the robot) as well. This type of communication protocol should be
used when a node is specialized in doing a specific tasks, like some complex
calculation. For example, this node could be responsible to calculate the
inverse of a matrix. In this way, all the other modules of your system that
need to invert a given matrix could directly use this service, without replicate
the inversion operation in their source code.

Visualization

ROS provides different tools to support developers in their work. Among
these tools, Ros Visualization (RViz) is very useful. It is a 3D visualizer
to graphically display the contents of a topic using viualization_markers
messages. RViz can visualize robot models, the environments they work in,
and sensor data directly from ROS topics. Built-in and custom plugins can
be loaded on RViz to add additional functionalities like motion planning or
motion control.

Figure 1.9: ROS Visualization (RViz).

Simulation

Another important feature of ROS is the simulation. In particular, ROS is
strictly integrated with Gazebo simulator http://gazebosim.org/, a multi-
robot simulator for complex indoor and outdoor robotic simulation. In the
Gazebo environment we can simulate complex robots, robot sensors, and
a variety of 3D objects. Gazebo already has simulation models of popular
robots, sensors, and a variety of 3D objects in their repository. In addition,
several plugin already exists to interact with the simulated using ROS. Using
Gazebo we can simulate the real sensor mounted on our robots receiving
exactly the same stream of data (thanks to the same ROS message definition
between the real and simulated sensors). An example of the Gazebo interface
is shown in Fig. 1.10, where a wheeled mobile robot is simulated.

13

Figure 1.10: Gazebo ROS simulator.

Summary

In this lesson, we introduced Robot Operating System detailing its history
and the motivation that brought to its development. The main element of
the ROS computation graph have been discussed: the ROS master node
and the executable nodes. Finally, two communication protocols allowing
ROS nodes to exchange messages each other have been introduced. Beyond
all its benefits, there are some disadvantages in using ROS. In particular,
main issues of ROS concern the its reliability and safety. Firstly, the com-
munication between multiple nodes can be unstable, especially with a big
amount of data or with a distributed robotic system. In addition, the ROS
master will respond to requests from any device on the network (or host)
that can connect to it. Any host on the network can publish or subscribe
topics, list or modify parameters, and so on. If an unauthorized user can
connect to the ROS master, they could leak sensitive information (such as
data from sensors or cameras), or even send commands to move a robot,
which creates both a privacy and a safety risk. These and other issues bring
to the development or ROS 2, the second version of ROS that focus on the
use of ROS in real industrial scenarios.

In the next lesson, an overview of the technologies used to program
robot will be provided. In particular, we will learn the basic usage of a
unix-based operating system, the basic concept of C++ programming and
the compilation and an overview of version control tools like git.

	Robot Operating System
	History of ROS
	ROS Distributions
	Robot Operating System

