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In this work, the problem of grasping novel objects with an anthropomor-

phic hand-arm robotic system is considered. In particular, an algorithm for

learning stable grasps of unknown objects has been developed, based on an

object shape classification and on the extraction of some associated geomet-

ric features. Different concepts, coming from fields such as machine learning,

computer vision and robot control have been integrated together in a modular

framework in order to achieve a flexible solution suitable for different appli-

cations. The results presented in this work confirm that the combination of

learning from demonstration and reinforcement learning can be an interest-

ing solution for complex tasks, such as grasping with anthropomorphic hands.

The imitation learning provides the robot with a good base to start the learning

process that improves its abilities through trial-and-error. The learning pro-

cess occurs in a reduced dimension subspace learned upstream from human

observation during typical grasping tasks. Furthermore, the integration of a
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synergy-based control module allows reducing the number of trials thanks to

the synergistic approach.

Introduction

The ability to effectively manipulate different objects, and to successfully employ a variety of

tools is one of the key skills that humans developed during their evolutionary history. For robots

to approach the capabilities of humans to interact with their environment, the design, implemen-

tation and control of dexterous, anthropomorphic hands appear to be pivotal points, and have

raised a lot of interest in the scientific community over the course of the years.

The human hand is a very complex, articulated biomechanical system, and the problem of repli-

cating its structure and capability is very challenging, not only in terms of mechanical design,

but also in terms of motion planning and control.

Inspired by studies in neuroscience (1), the idea of considering coordinated joint motion pat-

terns for robotic hands, realized both by means of mechanical transmissions and by developing

control strategies in a subspace of reduced dimensionality has been successfully applied in sev-

eral works (2), (3), (4).

Many different approaches to grasp synthesis problem have been proposed, but most of them

can be classified as either analytic or empirical (data-driven) (5). Analytic grasp synthesis usu-

ally consists of formulating a constrained optimization problem, in order to obtain grasps that

satisfy one or more desired properties, such as stability and dexterity (6). Empirical approaches,

instead, try to combine perceptual informations acquired through sensors and previous knowl-

edge coming from either experience, or human demonstrations, in order to compute grasps that

optimize some quality metrics (7). Different classifications have been proposed for data-driven

algorithms: for example, in (5) the authors distinguish between techniques based on human

observation, and those based on object features, while in (7) they are categorized based on the
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amount of previous knowledge of the object (known, familiar, or unknown object). A key step

in data-driven algorithms is grasp selection: based on the available data, an appropriate grasp

can be selected, either by choosing one of the candidates in a database, or by synthesizing it

from scratch. Generally the features of the object are fundamental in selecting a good grasp;

different solutions have been proposed to associate grasps to different objects: in some works,

the object is modeled using basic shape primitives, which are used to reduce the number of

candidate grasps (8), (9), in (10) SVM (support vector machines) regression is used to match

object shape, grasp parameters, and grasp quality, while in (11), (12) grasping regions of the

object are identified.

After a grasp has been selected, it is usually evaluated, either in simulation, or on the real

robot, according to some metrics that can discriminate between good and bad grasps. Over the

years, a variety of metrics for evaluating grasp performances have been discussed. An extensive

overview of the different quality indices proposed in literature is provided in (13). Grasp qual-

ity measures can be divided in two broad categories: those associated with the position of the

contact points on the object, and those that depend on the hand configuration; the former can

be further divided in three subgroups: measures based on the algebraic properties of the grasp

matrix G, measures based on geometric considerations, and measures that keep into account

limitations on the magnitude of the forces that can be exerted by the fingers.

Among Reinforcement Learning (RL) algorithms available in literature, it is worth to men-

tion two of the model-based RL algorithms that can be suitable for robotic manipulation:

PILCO (14) and PI-REM (15). PILCO (probabilistic inference for learning control) is a state-

of-the-art model-based, policy search algorithm, introduced by M.P. Deisenroth and C.E. Ras-

mussen in 2011. PI-REM (Policy Improvement with REsidual Model) is a recent model-based

algorithm proposed by M.Saveriano et al. in 2017. The key idea of PILCO is to learn a prob-

abilistic forward model of the system dynamics, in order to explicitly take uncertainties into
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account. The model is implemented as a non-parametric Gaussian Process with prior mean

function and squared exponential kernel. The policy improvement is gradient-based, and the

gradient is computed analytically. The basic idea of PI-REM is to develop initially an approx-

imate model of the system, controlled with an approximate policy (learned with PILCO); in a

second stage a residual model (difference between the approximate and real model) is learned

and used to improve the real policy which is applied directly on the robot. In this work, we

considered a robotic system consisting of a five-fingered hand and a redundant anthropomorphic

manipulator, provided with many degrees of freedom (20 for the hand and 7 for the arm); there-

fore, we employed dimensionality reduction techniques in order to define the learning algorithm

in a subspace of reduced dimensionality (16). In particular, the concept of postural synergies,

originally introduced in (1) has been transfered to the robotic hand, as proposed in (2), (17),

by means of principal component analysis (PCA). A data-driven approach to grasp synthesis,

combining learning from demonstration based on Neural Networks, and reinforcement learn-

ing based on Policy Improvement with Path Integrals, is adopted to provide the robot with the

ability to learn and improve grasps for previously unknown objects. To automatize the grasp-

ing process, a vision system is used to detect the object in the scene and to estimate its pose

and geometric features. With respect to (18), the new contribution of this work consists in an

upgraded framework that include visual perception and its integration in the learning pipeline.

In (18) the geometric parameters of the objects are assumed to be known, while in this work

they are computed from an RGB-D camera. Therefore, the level of autonomy of the algorithm

has been increased. On the other hand, the accuracy and resolution of the camera as well as the

efficiency of the algorithm adopted for geometry reconstruction and pose detection can affect

the learning process. The experiments run in this work demonstrate that the algorithm is stable

and robust in case of uncertainties on perception of the environment.
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Results

Overview of the algorithm A schematic overview of the proposed algorithm is provided in

Fig. 1.

First of all, informations about the region of interest in the scene are acquired in the form of a

point cloud through an RGB-D sensor; the acquired data is filtered and processed by the object

recognition module, that is responsible of detecting the objects in the scene, and estimating their

shape, dimensions and pose.

The extracted features are sent as an input to the Neural Networks (NN) module, where two

sets of multiple NN, one for the hand and one for the arm, have been trained on data acquired

from human demonstration through motion capture tools; the provided output is a vector of

three synergy parameters for the hand, and two coefficients for the arm. At this point, the

parameters provided by the neural networks are used to initialize a reinforcement learning loop,

based on the policy search paradigm, whose goal is to endow the robotic system with the ability

to improve its performances over time, with reference to some appropriate quality metrics.

Based on the initial policy parameters, some samples are extracted from Gaussian Multivariate

Distributions for the coefficients of both the hand and the arm; each of these samples generates

a trajectory for the robot, in Cartesian coordinates, during the planning phase. The planned

trajectories are executed on the real system using a kinematic control strategy (19), where a

closed loop inverse kinematics algorithm is used to convert references from the operative space

to the configuration space of the robot, serving as inputs to the lower level controllers embedded

in the system.

To each of the executed trajectories is assigned a cost that consists of two terms: a binary score

that heavily penalizes trajectories leading to failed grasps, and a cost function related to a quality

index of the force closure properties of the grasp (20). Finally, based on the obtained costs, the
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policy is updated, and a new set of parameters is extracted; this loop can be either repeated for

a fixed number of times, or run until the cost function becomes lower then a desired threshold.

Dimensionality reduction Robots are complex nonlinear systems, with many degrees of free-

dom, that have to execute complex actions, potentially interacting with unstructured environ-

ments. Therefore, most of the machine learning technique that have been successfully applied

in other fields are difficult to apply to the huge amount of parameters involved in the context of

robotics (21), (22).

A potential solution to this problem is to adopt different techniques that are targeted at reducing

the dimensionality of the system. Postural synergies, sometimes also called eigengrasps, have

been initially studied in the field of neuroscience: it has been observed that the movement of

the human hand during grasping and manipulation is dominated by movements in a space of

reduced dimensionality, compared to the number of DoFs of the human hand (1).

This concept can be transferred to robots by means of data analysis techniques, such as princi-

pal component analysis (PCA) (23). Taking advantage of this idea, the anthropomorphic hand

can be controlled directly in the postural synergies subspace, greatly reducing the complexity

of planning, control and learning. The postural synergies of the SCHUNK SVH hand com-

puted in (17) have been implemented in this work. The number of motors is significantly lower

than the number of joints, thus joint motion couplings are regulated by means of mechanical

synergies defined via mechanical transmissions. The differential kinematics between the me-

chanical synergies subspace and the Cartesian space, is represented by the following equation

ẋ = Jhmṁ, where Jhm ∈ IRnx×nm is the mechanical synergies Jacobian and is computed as

Jhm = JhSm, such that,

ẋ = JhSmṁ = Jhq̇; (1)
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x ∈ IRnx , with nx = 15, is the position vector of the five fingertips, Jh ∈ IRnx×nq is the

S5FH hand Jacobian. Sm ∈ IRnq×nm is the matrix of the mechanical synergies and maps motor

velocities into joint velocities, Smṁ = q̇. In addition to the mechanical synergies of the hand,

motion coordination patterns or motor synergies can be computed to further reduce the number

of parameters needed to plan and control the grasping activities. Synergies subspace for hand

control has been computed using human grasp data and a mapping algorithm available from

a previous work developed in (24). Human grasps data are based on fingertips measurements

that are used as desired references in a closed-loop inverse kinematics (CLIK) scheme that is in

charge of reconstructing the hand configuration. The maps between the synergies subspace and

the motor space, and between the synergies subspace and the joint space are given respectively

bym = Ssσ + m̄, and q = Sm(Ssσ + m̄) + q0.

The matrix Ss ∈ IRnm×ns represents the base of the synergies subspace, whose dimensions

depend on the number of eigengrasps considered to approximate the grasp. Thus, the number

ns can vary from 1 to 9. In this work, the synergies subspace is three-dimensional and, thus, it is

obtained by choosing ns = 3. Thus, the columns are the first three eigenvectors (or eigengrasps)

with higher variance computed using principal component analysis (PCA) on the grasps data-set

mapped from the human hand to the robotic hand. Finally, m̄ ∈ M ⊆ IRnm is the zero-offset

of the motor synergies subspace.

Object recognition and pose estimation. In this work, a simple object recognition and pose

estimation pipeline has been implemented.We used a semi-structured environment involving a

table on which different objects are placed. To simplify, we assume that such objects could be

recognized as sphere or cylinder. We used an ASUS Xtion PRO live camera for point cloud

data acquisition.

We divide the analysis in two phases: syntactic phase, in which different clusters have been
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extracted from the scene; semantic phase, in which all the clusters found are tested with two

RANSAC models (sphere and cylinder) and the object is labeled as the best fitting model.

Syntactic phase. After taking a point cloud of the scene, we follow a simplified processing

pipeline. Since we have both a static scene and static position between the scene and the camera,

we can assume that all the data out of certain limits can be cut out and filtered. As a second

step, we find the largest planar component of the scene, representing the table, and extract it;

we also need to divide all the other points in different clusters so that we obtain all the clusters

that represents all the candidate objects that will be classified (see Fig. 2). For this purpose, we

implement the Euclidean cluster segmentation criteria described as follow:

• The point cloud P is represented in a k-d tree structure;

• For each point pi in P :

– Add pi to the current queue Q;

– For each point pi in Q do:

∗ add every neighbor of pi in a radius r, toQ unless it has already been processed;

– When the list of all points in Q has been processed, add Q to the list of clusters C,

and reset Q to an empty list;

• The algorithm terminates when all points pi ∈ P have been processed and are now part

of the list of point clusters C

In Algorithm 1 we describe in short how the syntactic phase work. The input to the syntactic

phase algorithm is a point cloud S of the scene and the output is the vector of point cloud

clusters[pointCloud].

Semantic phase. Now we have to label the different objects found. Each object is processed

both as cylinder and a sphere using RANSAC models. The criteria adopted is related to the
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Algorithm 1 Syntactic Phase
1: function (clusters[pointCloud]) = syntacticPhase(PointCLoudS)
2: (Sf ) = regionFilter(S, regionLimits)
3: (Sf ) = removeLargestPlanarComponent(Sf )
4: (clusters[pointCloud]) = EuclideanClusterExtraction(Sf )

number of inliers and outliers from which the RANSAC algorithm comes out. In this way we

can classify each object and establish how much it is sphere or cylinder. Both spheres and

Cylinders are associated to a vector of parameters ϑ. For spheres it is ϑ = (r, c), where r and

c are the radius and the 3D center of the mathematical model respectively. For cylinders the

parameter are ϑ = (r, c, d, h) where r is the radius, c is the 3D centroid of the cluster, d is the

vector representing the axis of the cylinder and h is the height computed as the distance between

two point that have the maximum and minimum coordinate values on the maximum variance

axis. Such criteria allows us to also use different objects that are quasi-sphere or quasi-cylinder

(such as a cup of tea or a bottle). This approach emphasizes the robustness of the system to

grasp or manipulate objects that have a similar shape to those already known. In fact, in the

recognition phase we assume that all the objects can be sufficiently approximated with sphere

or cylinders. Even though this approximation can introduce errors in recognition and pose

estimation, the learning process makes the system robust to perception errors. The pseudocode

of the semantic phase is described in Algorithm 2. The input to the semantic phase algorithm is

a point cloud O of a clustered object and the outputs are the label l and the parameter vector ϑ

of the sphere or cylinder that best fits the object.

Pose estimation. RANSAC model has different parameters for each shape: center and ra-

dius for the sphere; center, radius, axis of the cylinder and height for the cylinder. All the

coordinates are expressed in camera frame, thus a transformation in the robot frame is neces-

sary to allow for manipulation. For this purpose, a marker has been placed at a fixed location on

the base of the robot and transformation matrices have been used to move from one coordinate
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Algorithm 2 Semantic Phase
function (l,ϑ) = semanticPhase(PointCLoudO)

2: (is,ϑs) = RANSAC(O, Sphere)
(ic,ϑc) = RANSAC(O,Cylinder)

4: if ic > is then
l = Cylinder

6: return (l,ϑc)
else

8: l = Sphere
return (l,ϑs)

10: end if

frame to another.

The following notations for the necessary transformation matrices can now be defined.

• T co : Pose of the object in camera frame;

• Tmc : Transformation between the camera and the marker;

• T bm: Constant transformation between the marker and the base frame;

• T bo : Transformation between the object and the base frame;

T co is provided by the object recognition script, T bc is acquired using a ROS wrapper for

Alvar (25), an open source AR tag tracking library, while T bm is fixed and known.

For the composition property of transformation matrices (19), the desired matrix T bo can be

found as:

T bo = T bmT
m
c T

c
o (2)

Learning from demonstration In a previous work (26), a dataset of grasps demonstrated by

a human teacher has been acquired through a motion capture suit. For each of the demonstrated

grasp, the features of the object have been defined as the input, while the values of both the
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synergy coefficients of the hand, and the parameters of the arm have been defined as the output.

This dataset has been used to train 2 sets (one for the hand and one for the arm) of neural

networks (27). Their architecture is experimentally chosen by trying different combinations

of hidden layers and neurons and analyzing the corresponding performance in terms of Mean

Squared Error (MSE). We found out that a feedforward structure with 2 hidden layers and 10

neurons for each is the suitable choice for the particular application.

Reinforcement learning The output of the NN module is then used to initialize the policy

parameters of a reinforcement learning loop. The idea is to explore the synergy subspace of

the system locally to the initial values provided by imitation learning, in order to improve the

performances of the robot in a trial-and-error paradigm. The reinforcement learning loop can

be fundamentally divided in 4 main phases:

• Sampling: N samples are extracted from two Multivariate Gaussian Distributions with

means µhand and µarm given by the outputs of the neural networks, and covariance ma-

trices Σhand and Σarm chosen before the start of the loop. The choice of Σhand and Σarm

determines the width of the exploration in the space of policy parameters; in this work, a

simple exploration decay has been implemented in order to favor the exploitation of the

acquired informations, over exploration in later stages of the learning process.

• Planning: For each of the samples extracted in the previous phase, a trajectory in the

Cartesian space is planned for both the hand and the arm; the equation mapping the

synergy subspace to the Cartesian space for the hand is given by:

ẋ = Jhmṁ = JhSsσ̇ (3)

where Jhm is the mechanical synergies Jacobian, ṁ and σ̇ are the vectors of motor and
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synergies velocities respectively, Jh is the hand Jacobian, and Ss is the synergy matrix;

instead, the mapping between the reduced subspace for the arm and the Cartesian pose of

the end-effector is given by:

p = p+ epαp (4)

ε = ε+ eεαε (5)

where p is the position of the center of the wrist, ε is the vector part of the quaternion,

p and ε are the mean values of p and ε obtained from PCA and ep and eε are the first

principal component for the position and orientation respectively. Based on this relation-

ships, a rectilinear path from the home configuration of the wrist, to the desired pose is

planned; once the desired pose has been reached, the fingers are closed according to the

values of the synergy coefficients.

• Execution: In order to execute the planned trajectories, the references have to be mapped

in the configuration space of the system; in particular, we need to compute the target ve-

locities of the joints that allow the robot to reproduce the desired motions: this has been

done by applying a closed loop inverse kinematic algorithm (19).

In addition to the execution of the planned motions for the hand-arm system, an addi-

tional, low-level reactive control has been implemented for the hand: the fingers close

towards the centroid of the polygon with vertices at the center of the fingertips until the

measured current reach a certain threshold.

• Evaluation and reward: For each trial performed the agent receives a reward function.

As in (28), the scalar cost function V (σ) is based on a force-closure quality index in-
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troduced in (20). Without going into details, an algorithm for optimal force distribution

towards the improvement of force closure property can be based on the minimization of

a cost function V (δσ) with respect to δσ.

Let Ωk
i,j ⊂ IRh indicate the set of grasp variables y that satisfy the friction cone constraint

with a (small, positive) margin k, where h is the dimension of the internal force sub-

space E; and let w indicates the object weight. The matrix E maps the controlled joint

displacement into internal forces activated on the object. Underactuation reduce the sub-

space’s dimension of controllable internal forces according to the mechanical and motor

synergies and, thus, according to the matrices Em = ESm and Es = ESmSs.

For the i − th contact and the j − th constraint, V is obtained as the summation of the

terms: V (w,y) =
∑
i

∑
j Vi,j(w,y), defined as

Vi,j =

{
(2σ2

i,j(w,y))−1 y ∈ Ωk
i,j

aσ2
i,j(w,y) + bσi,j(w,y) + c y /∈ Ωk

i,j

(6)

where a, b and c are constant positive parameters conditioned by properties imposed to

V .

This cost function, detailed in (20), has a formulation, suitable for practical implementa-

tion in manipulation planning. To be more specific, the function V has been adopted as a

cost function indicating the quality of grasp since the reciprocal of V reflects the distance

of the grasp from violating the friction cone constraints and is obtained by formulating

and solving the problem as a second order cone programming (SOCP).

In this work, the reward function r (σ) has the following expression:

r (σ) = βV (σ) + φ (7)

where β = 10−6 is a scaling factor and φ is:

φ =

{
0 if grasp succeeds

104 if grasp fails (8)
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The value φ = 104 has been chosen higher than in the previous work in order to penalize

more decisively the failed grasps and to avoid them in the following explorations. β

and φ have been tuned experimentally with the aim that the cost function V (σ) become

meaningful when the grasp is successful.

Experimental results We tested our algorithm on an experimental setup, consisting of a

Schunk five fingered hand, a Kuka lightweight robot 4+, an Asus Xtion Pro Live sensor for

point cloud acquisition and a PC equipped with the ROS meta-operating system.

For each experiment a different object is chosen, and placed at a random position on a table in

front of the robot; the sensor acquires a point cloud of the scene, and the features and pose of

the object are estimated by the object recognition module, which publishes these informations

on a ROS topic, that the neural network node subscribes to. The initial values of the policy pa-

rameters are obtained by the NN and used to generate 5 samples for the reinforcement learning

loop; each of the corresponding trajectories is executed and a reward is computed based on the

force closure cost function, and on the result of a simple lifting test: once the fingers are closed,

the robot tries to lift the object and carry it at the home configuration: if the test fails, an high

penalty is assigned to the trial, while obviously no penalty is assigned for a successful test. The

rewards associated to each trajectory are used to update the policy of the algorithm, assigning

low probabilities to trajectories that performed poorly.

Three different objects have been considered for these experiments: a tennis ball, a plastic

strawberry, and a plastic bottle; the results of the experiments are shown in Figures 3, 4, and 5.

For each experiment we report:

• a color-coded table, were the i-th row is the i-th update of the reinforcement learning loop,

and the j-th column is the j-th trial: each entry is red if the corresponding grasp failed,

green if it was successful. Thus, five trials for each update led to a total number of 25
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trials. For each tried grasp, the matching with the corresponding values on the graphs

(images (B), (C) and (D)) can be found by reading the table from left to right and from

the top to the bottom;

• a plot of the evolution of the force closure cost function;

• a plot of the evolution of the hand synergies and arm scores.

We can see how the number of successful grasps significantly increases during the final up-

dates in all the experiments, while the cost associated with the force closure index converges to

lower values; in particular, in the experiment with the tennis ball, we can see how the number

of successful attempts is higher in the beginning of the experiment compared with the other

objects: in fact, since the ball can be accurately represented with a simple spherical shape, the

values of the parameters obtained by imitation learning already provide a good approximation

for synthesizing a stable grasp; instead, when trying to execute harder grasps, the informations

acquired from human demonstration are not good enough to obtain stable grasps, and the re-

inforcement learning loop is necessary to explore the parameter space and improve the initial

grasps by learning from the interaction of the robot with the environment.

The role of force closure cost function In order to appreciate the influence of the two terms

of the reward function in the convergence of the algorithm, we have run experiments (using

the value φ = 103) for: (i) the whole hand-arm system; (ii) only for the hand. The conclusion

is that for the hand-arm system we have to increased φ, as done in this work (φ = 104), to

have a faster convergence (almost halving the trials). Indeed, by increasing φ, the pose of the

arm leading to a correct grasp is learned faster. The experiments confirm that the learning

capabilities and the convergence of the algorithm are significantly affected by the parameter φ

while the force closure cost function affect mainly the hand configuration. In order to appreciate
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the influence of the force closure cost function, we have run the algorithm with and without the

adoption of this cost only for the hand. The conclusion is that the force closure cost function

does not influence the success of the grasp but the stability of the grasp. The number of trials

to get the convergence of the algorithm does not change while the force closure cost changes

significantly. In Table 1 a quantitative comparison of final grasps, obtained for different objects

with and without the adoption of the quality index to generate the action, is reported.

Table 1: Comparison of grasps obtained with and without force closure cost function.
Force Closure Cost Value

Grasp Cost not used Cost used
Bipodal 1.9 · 107 8.5 · 105

Tripodal 2.5 · 107 3.1 · 106

Sphere five finger 2.7 · 108 4.6 · 107

Cylinder five finger 1.9 · 108 1.4 · 107

Evaluation of the algorithm in different initial conditions To validate the algorithm in dif-

ferent initial conditions we have compared the results using force closure cost function after

25 trials. We have tested the algorithm in three different conditions with reference to the pa-

rameters initialization: (i) the initialization of the policy is provided by comparing the object

to be grasped with examples contained in a reference table (including a limited number of

object/grasp pairs) and by choosing parameters related to the closest one; (ii) the shape and

dimension of the object are known and given as input to the NN, the initialization of the policy

is the output of the NN; (iii) the object is unknown and the vision system is in charge of extract-

ing the information to be given as input to the NN. In case (i) the algorithm fails and does not

converge. In (ii) and (iii) the convergence is ensured but the quality of the grasp is influenced by

the uncertainty introduced by the perception. The results are better for (ii) in terms of quality of

the grasp. For (iii) the cost function is greater of an order of magnitude, regardless object and

grasp type. Therefore, we can state that the algorithm is robust to uncertainties on perception
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to a certain extent (see cases (ii) and (iii)), but if the initialization is too far from the correct

value the algorithm does not converge (see case (i)). Another consideration to do is that if the

system is constituted only by the hand, in case (i) the algorithm converge. This means that the

robustness of the algorithm with respect to the initial conditions decreases as the complexity of

the system increases.

Discussion

In this work, the problem of grasping novel objects with a robotic hand-arm system has been

considered; in particular, an algorithm for learning stable grasps of unknown objects has been

developed, based on a simple shape classification and on the extraction of some of the associ-

ated features.

Building upon previous researches on the topic, the results presented in this work confirmed

that the combination of learning from demonstration and reinforcement learning can be an in-

teresting solution for complex tasks, such as grasping with anthropomorphic hands, providing

the robot with a good base to start the learning process, and allowing it to improve its abilities

through trial-and-error.

The experiments carried out on our setup provided encouraging results, showing how this frame-

work is suitable for synthesizing stable grasps of different objects, and how they can potentially

be improved over time, with reference to some quality metrics.

The algorithm has been tested in three different conditions with reference to parameters ini-

tialization. The experimental results demonstrate that the system is robust to uncertainties on

perception of the environment to a certain extent. If the initialization is ”wrong”, namely too

far from a good value, the algorithm does not converge. The initialization is obtained using a

neural network trained by human grasping samples. We have verified that, if neural networks

are not used to initialize the policy, the algorithm does not converge. In other words, a complex
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system with high degrees of freedom would never converge unless proper initialization of the

policy parameters. In this contest synergies will help for a smart choice of the policy while a

synergy-based supervised learning algorithm allows a suitable initialization of the policy pa-

rameters. One of the main limitations of the proposed algorithm is in the very simple object

recognition algorithm, which could be improved by considering additional shape templates, as

well as decomposing complex objects into simpler parts that can be associated with basic shapes

in a satisfying way; furthermore, an automatic way for testing the success of a grasp, without

relying on a supervisor could be implemented: for example this could be done by tracking the

object position with the camera.

The use of different cost functions in the reinforcement learning loop could also be investigated,

for example developing some metric for the quality of a grasp derived from visual informations,

or considering costs that depend on the particular task that we want to accomplish.

The proposed algorithm could also be integrated in a wider framework, where different actions

are selected on an higher hierarchical level in a task-oriented fashion, guiding the learning pro-

cess towards grasp that better suit a particular application. Future comparison with different

learning algorithm are referred in particular to reinforcement learning policy search methods

like PILCO (Probabilistic Inference for Learning Control) (14) and PI-REM (Policy Improve-

ment with REsidual Model) (15). It is worth noticing that, since it is not easy to integrate these

algorithms in such a complex framework, the comparison with other methods is not trivial. In

effect, different aspects need to be considered and carefully evaluated.

Materials and methods

Hardware
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Schunk five-finger hand (SVH) The SVH is a very compact, compliant under-actuated

hand, which closely resembles the structure and the appearance of the human hand; one of

the key features of this hand, is that all controllers, regulators, and power electronics are fully

integrated in the wrist. The hand has a total of 9 drives that move the 20 degrees of freedom of

the hand, thanks to the mechanical coupling between joints, inspired by the way human fingers

usually move together. Technical details and specifics for this device can be found in (29). In

order to communicate with the hand, a ROS wrapper for the SVH driver, available at (30) has

been used.

Kuka Lightweight Robot 4+ The KUKA LWR 4+ is a very efficient and portable robot,

weighting only 16 kg, with a payload of 7 kg; motors, gears and sensors are accommodated

inside an aluminum housing, as well as the necessary control and power electronics.

The redundant DoF provides the arm with additional flexibility, and can be used in different

ways, based on the task at hand: it can be exploited to avoid obstacle, to increase the manipula-

bility, or in general to obtain more favorable motions for the desired task.

Technical details and specifics for this device can be found in (31).

The control of the KUKA arm has been implemented by taking advantage of the FRI library,

available at (32), which provides a simple user interface for communicating with the robot. The

library runs on a remote pc, that is connected with the KRC (KUKA Robot Controller) via

ethernet.

Asus Xtion Pro Live Asus Xtion PRO LIVE (33) is an RGB-D sensor, consisting of an

RGB camera, an infrared emitter, and a CMOS sensor. The Asus Xtion PRO LIVE is a compact,

plug-and-play device, with a resolution of 640x480 for the depth stream, and 1280x1024 for

the color stream, with a depth range of approximately 0.6 to 3.5 m and a field of view of 58

horizontal, 45 vertical.
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Software

ROS ROS is a meta-operating system, providing many functionalities, such as low-level

device control, hardware abstraction, and package management. ROS is based on a peer-to-

peer network of processes, called nodes, which communicates using the ROS communication

infrastructure.

The ROS framework is based on an asynchronous publish/subscribe system, and it provides

many different functionalities, easily accessible, either by GUI, or by command-line (34).

PCL Library The PCL library provides implementations of many state-of-the-art algo-

rithms for point cloud processing, such as filtering, segmentation and model fitting (35).

Methods

Neural networks The NN used in this work have been built and trained using the Neural

Networks Toolbox available in Matlab@. All the networks have the same architecture, chosen

experimentally, consisting of two hidden layers with 5 neurons each; the available dataset has

been randomly divided in training, validation and test set, with 70%, 15% and 15% percentages

respectively. The weights have been randomly initialized using the Nguyen-Widrow rule, and

the Levenberg-Marquadt algorithm has been used for training.

Policy improvement with path integrals (PI2) The implemented solution for the rein-

forcement learning algorithm loop is based on the episodic PI2 formulation originally proposed

in (36). Each trajectory is assigned a probability in the following way:

P (τi) =
e−

1
λ
Si∑n

i=1 e
− 1
λ
Si

(9)
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where Si = S(τi) is the cost of trajectory τi.

These probabilities are used to update the mean value of the parameters for the next iteration:

µθk = µθk−1 +
n∑
i=1

P (τi)(µθi−1 − θi) (10)

where

• µθ0: initial mean value of the policy parameters;

• Σθ0: initial covariance matrix

• θi ∼ N(µθ0,Σθ0): i-th policy parameters sample;

Since we are implementing an exploration decay, Σθ is also updated:

Σθk = γΣθk−1 (11)

The values of the parameters used for the experiments are:

• k = 5: number of updates

• n = 5: number of trials per update

• λhand = 1000: hand synergies variance

• λarm = 0.0002: arm coefficients variance

• γ = 0.7: exploration decay
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Figures

Figure 1: Schematic overview of the proposed algorithm.

Figure 2: Example of point cloud processing: (A) Original point cloud, (B) Processed point
cloud: the main plane in the scene has been removed, and segmentation of the remainder of the
cloud has been executed.
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Figure 3: Experiment on a tennis ball: (A) Grasp success table, (B) Force closure cost function,
(C) Synergy coefficients, (D) Arm scores.
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Figure 4: Experiment on a plastic strawberry: (A) Grasp success table, (B) Force closure cost
function, (C) Synergy coefficients, (D) Arm scores.
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Figure 5: Experiment on a plastic bottle: (A) Grasp success table, (B) Force closure cost func-
tion, (C) Synergy coefficients, (D) Arm scores.
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Figure 6: Successful grasp of the tennis ball, strawberry and plastic bottle at the end of the
learning process.
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13. M. A. Roa, R. Suárez, Grasp quality measures: review and performance, Autonomous

robots 38, 65 (2015).

27



14. M. Deisenroth, C. Rasmussen, In Proceedings of the 28th International Conference on

machine learning (2011), pp. 465–472.

15. M. Saveriano, Y. Yin, P. Falco, D. Lee, Data-efficient control policy search using residual

dynamics learning, IEEE/RSJ International Conference on Intelligent Robots and Systems

pp. 4709–4715 (2017).

16. F. Ficuciello, P. Falco, S. Calinon, A brief survey on the role of dimensionality reduction in

manipulation learning and control, IEEE Robotics and Automation Letters 3, 2608 (2018).

17. F. Ficuciello, A. Federico, V. Lippiello, B. Siciliano, Synergies evaluation of the schunk

s5fh for grasping control, Advances in Robot Kinematics 2016 pp. 225–233 (2018).

18. F. Ficuciello, Hand-arm autonomous grasping: Synergistic motions to enhance the learning

process, Intelligent Service Robotics (2018).

19. B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics–modelling, planning and control,

Advanced Textbooks in Control and Signal Processing Series (2009).

20. A. Bicchi, On the closure properties of robotic grasping, The International Journal of

Robotics Research 14, 319 (1995).

21. J. Peters, S. Vijayakumar, S. Schaal, Reinforcement learning for humanoid robotics, IEEE-

RAS international conference on humanoid robots pp. 1–20 (2003).

22. M. P. Deisenroth, G. Neumann, J. Peters, et al., A survey on policy search for robotics,

Foundations and Trends R© in Robotics 2, 1 (2013).

23. F. Ficuciello, G. Palli, C. Melchiorri, B. Siciliano, Postural synergies of the ub hand iv for

human-like grasping, Robotics and Autonomous Systems 62, 515 (2014).

28



24. G. Palli, C. Melchiorri, G. Vassura, U. S. et al., The dexmart hand: Mechatronic design and

experimental evaluation of synergy-based control for human-like grasping, Int Journal of

Robotics Research 33, 799 (2014).

25. ROS, Ros wrapper for the alvar AR tag tracking library. http://wiki.ros.org/ar_

track_alvar.

26. F. Ficuciello, D. Zaccara, B. Siciliano, Learning grasps in a synergy-based framework,

International Symposium on Experimental Robotics pp. 125–135 (2016).

27. M. P. Perrone, L. N. Cooper, How We Learn; How We Remember: Toward an Understand-

ing of Brain and Neural Systems: Selected Papers of Leon N Cooper (World Scientific,

1995), pp. 342–358.

28. F. Ficuciello, D. Zaccara, B. Siciliano, Synergy-based policy improvement with path inte-

grals for anthropomorphic hands, IEEE/RSJ International Conference on Intelligent Robots

and Systems pp. 1940–1945 (2016).

29. Schunk, Svh documentation. https://schunk.com/it_en/

gripping-systems/highlights/svh/.

30. Schunk, Svh driver ros wrapper. http://wiki.ros.org/schunk_svh_driver.

31. Kuka, Lightweight robot 4+ documentation. https://www.kukakore.com/

wp-content/uploads/2012/07/KUKA_LBR4plus_ENLISCH.pdf.

32. FRILibrary, Fast research interface library. https://cs.stanford.edu/people/

tkr/fri/html/.

33. Asus, Xtion pro live. https://www.asus.com/3D-Sensor/Xtion_PRO_

LIVE/.

29



34. ROS, Robot operating system. http://www.ros.org/.

35. R. B. Rusu, S. Cousins, 3D is here: Point Cloud Library (PCL), IEEE International Con-

ference on Robotics and Automation (2011).

36. F. Stulp, O. Sigaud, Path integral policy improvement with covariance matrix adaptation,

arXiv preprint arXiv:1206.4621 (2012).

Acknowledgments

The research leading to these results has been partially supported by the RoDyMan project

(FP7/2007-2013) under ERC AdG-320992, and and partially by MUSHA project carried out in

the frame of Programme STAR, financially supported by UNINA and Compagnia di San Paolo.

30


