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Summary

Many existing works in the robotic literature deal with the problem of nonpre-

hensile dynamic manipulation. However, a unified control framework does not

exist so far. One of the ambitious goals of this Thesis is to contribute to identify

planning and control frameworks solving classes of nonprehensile dynamic ma-

nipulation tasks, dealing with the non linearity of their dynamic models and, con-

sequently, with the inherited design complexity. Besides, while passing through a

number of connections between dynamic nonprehensile manipulation and legged

locomotion, the Thesis presents novel methods for generating walking motions in

multi-contact situations. A short summary of each Chapter follows.

• Chapter 1 contains a general introduction about the problems related to

motion planning and control for dynamic nonprehensile manipulation and

legged locomotion tasks. The methodologies used to cope with such prob-

lems for some classes of dynamic manipulations are described.

• Chapter 2 is focused on robot control for nonprehensile planar rolling ma-

nipulation, where an actuated manipulator of a given shape, referred to as

hand, manipulates an object without grasping it through rotations. The

goal of this Chapter is the synthesis of passivity-based control laws for

planar nonprehensile rolling manipulations between two arbitrary shapes.

This control method exploits the energy and interconnection properties of

the physical system taking advantage of the nonlinearities of the system;

it allows to include the gravitational and the Coriolis effects in the con-

trol action, thus avoiding the use of approximate models. In addition, a

systematic approach to simplify the control design to shape the energy of

the closed-loop system is proposed. Both separable (with constant mass

matrix) and non-separable (with non constant mass matrix) Hamiltonian

systems are considered as case studies. Numerical tests are presented to

show the performance of the control laws described in this Chapter.
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• Chapter 3 is devoted to the optimal planning of robot dynamic manipula-

tion tasks involving impacts between the manipulator and the manipulated

object, such as the ball batting and the ball juggling tasks. The planning

algorithms presented in this Chapter can be roughly divided in three main

phases: the prediction of the motion of the ball, the selection of the con-

figuration of the paddle at impact time, and the trajectory planning for

the paddle. In the first two phases, the hybrid dynamics of these tasks is

properly taken into account, together with nonlinear estimation methods to

intercept the ball in time. Whereas, in the third phase a minimum acceler-

ation planner in SE(3), based on the theory of differential geometry, is used

to generate an optimal path for the manipulator. Simulations of different

case studies validate the approach presented in this Chapter, along with a

comparison with state-of-the-art methods.

• Chapter 4 motivates the connection between nonprehensile manipulation

and bipedal legged locomotion. Since, for the dynamic walking task, natural

motion results from the minimization of the centroidal angular momentum,

a comparison between different approaches to deal with such minimization

is presented. Successively, the Chapter introduces the main open problems

related to multi-contact walking. When generating standard walking mo-

tions, different simplifying assumptions are valid, and allow to keep the

model linear and well suited for preview based control. Nevertheless, while

dealing with more complex tasks, like walking motion in multi-contact con-

figurations, several simplifying assumptions are no more valid. Such a prob-

lem is addressed in this Chapter, by proposing a Newton method based on

carefully crafted linear approximate models. This ensures that the dynamic

feasibility is always satisfied exactly through a nonlinear model predictive

control. Simulation results show that walking motions up and down stairs

with an additional hand support can be efficiently computed with the pro-

posed approach.

• Chapter 5 discusses the main contributions, remarks, and proposals for pos-

sible future developments of the results presented in the manuscript. Some

ideas to investigate new lines of research related to the connections between

dynamic nonprehensile manipulation and legged multi-contact locomotion

modeling and control are detailed.
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θ̇h(0), sh(0), ṡh(0)): (0.1, 0, 0.1, 0) black line, (−0.1, 0, 0.1, 0) blue

line, (0.1, 0,−0.1, 0) red line, (−0.1, 0,−0.1, 0) green line. The ref-

erence is q∗ = (0, 0). . . . . . . . . . . . . . . . . . . . . . . . . . . 30

ix



x LIST OF FIGURES

2.7 Surface of the desired potential function Vd with a minimum in

the desired equilibrium configuration. The red line represents the

3D evolution of Vd(t) with respect to θh(t) and sh(t), considering

as initial conditions (θh(0), θ̇h(0), sh(0), ṡh(0)) = (−0.1, 0,−0.1, 0),
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(0.1, 0, −0.05, 0), and the desired configuration is q∗ = (0, 0). . . . 37

2.11 Surface of the desired potential function Vd with a minimum in

the desired equilibrium configuration. The red line represents the

3D evolution of Vd(t) with respect to θh(t) and sh(t), considering

as initial conditions (θh(0), θ̇h(0), sh(0), ṡh(0)) = (0.1, 0,−0.05, 0),
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Chapter 1

Introduction

1.1 Dynamic Nonprehensile Manipulation

The robotic manipulation aims at finding a set of suitable controls to change

the state of an object from an initial to a desired configuration. A manipulation

task/action is said to be nonprehensile when the object is not directly caged

between the fingertips or the palm of the hand. The force closure constraint

does not hold during a nonprehensile manipulation action, and the grasp is then

performed exploiting only unilateral constraints, allowing the object to roll, slide,

and break the contacts with the manipulator [78]. Examples of nonprehensile

manipulation tasks are in everyday life such as pushing objects, folding clothes,

bringing wineglass on a tray, cooking in a pan, and many others. Nonprehensile

manipulation is classified as dynamic when the dynamics of both the object and

the robot are essential to successfully accomplish the task.

The analysis of objects with multiple frictional contacts poses two interesting

problems. The forward problem, predicts the motion of an object given the ap-

plied force. Solving this is essential for simulation aspects. The inverse problem,

predicts the applied forces producing a desired object motion, or the set of applied

forces producing a desired contact mode. Solving this is essential for planning

and control aspects. This Thesis is mainly devoted to the inverse problem.

In the last decades, with the increase of powerful technology in both sensing

and actuation speed, it has become possible the use of robots to manipulate an

object in a very fast way. Indeed, the robotic community began to deal with

nonprehensile dynamic manipulation tasks. Planning and control methods for

such kind of tasks were firstly introduced in [68] and [73]. Nowadays, this class

1



of manipulation problems is still rather far from being fully solved and applied

in robotic applications. In such kind of manipulation, a kinematic chain cannot

be always closed, with the drawback of not having a direct kinematics avail-

able. Moreover, when one of more contacts change their status, the dynamics

of the system changes in a non-smooth manner making the design of the con-

troller more involved. Since the object can perform a large variety of motions,

most of nonprehensile systems are underactuated, arising controllability issues.

Nevertheless, without adding complexity to the mechanical design, nonprehensile

dynamic manipulation offers several advantages:

• increase of available robot actions;

• enlargement of the operative workspace;

• reduction of task execution time;

• improvement of the dexterity in dynamic tasks.

Applications of nonprehensile dynamic manipulation through robots span in-

dustrial, surgical, humanoid and service robotics. Examples of nonprehensile

dynamic manipulation tasks can be found in the control of vibratory platforms,

usually employed in those applications where it is not directly possible to ma-

nipulate small or damageable objects which cannot be grasped. The problems

of pushing, orienting and assembling parts have been extensively investigated for

factory automation, where commercial bowl feeders, or parts orienting systems,

are employed. Also in surgical robotics, some nonprehensile manipulation tasks

are performed, such as pushing away arteries and reshaping muscles or organs.

In service robotics, the development of humanoid robots assisting elderly people

in everyday tasks can be sped up with the extension of the set of available robot

movements. In addition, there exists many similarities between dexterous nonpre-

hensile manipulation and robotic walking. Therefore, the research in the field of

robotic dynamic manipulation may have repercussions in the design of advanced

legged robots, actuated prosthesis, or active exoskeletons, in the same way as,

for example, the framework of frictional grasping can be applied to compensate

disturbance and balance a legged robot [85]. The following Section introduces

the motivation behind the study of methods for motion planning and control of

legged locomotion.

2



1.1.1 From Nonprehensile Manipulation to Multi-Contact
Walking

Several analogies exist between the dynamic nonprehensile manipulation and

walking tasks within locomotion applications. In particular, walking shares some

hybrid contact/non-contact conditions with the manipulation task. In fact, meth-

ods for grasp analysis deal with the same constraints on contact forces and center

of mass (CoM) position that arise for legged robots on irregular and steep terrain,

since during manipulation the surface of the object is rarely flat and horizontal

[14, 19, 85]. In the same way as grasp taxonomies are used to understand how the

hand can hold an object, also taxonomies of the whole body pose for balancing are

proposed in [17], as tools for autonomous decision making. This classification of

multi-contact whole body poses highlights that almost all the so-called whole-body

grasps are nonprehensile [10]. Such manipulation intrinsically involves multiple

contacts and interaction between complex shapes, and then it can be related to

legged locomotion in multi-contact situations [27, 104]. For this reason, the gen-

eration of motion for walking on uneven terrain in a multi-contact situation is

inspected in this Thesis. A state constrained optimal control is designed with

the aim to identify the set of possible - dynamically feasible - movements for a

bipedal walking robot in a set of multi-contact configurations. A reference motion

in case of interaction of a humanoid robot with external supports while walking

on stairs is generated, extending the work [18]. Nonlinear transformations of the

system dynamics are designed with the aim to keep the computational burden

compatible with the real-time [105].

1.2 Methodology

In order to understand and recognize the dynamic effects playing a relevant role

in nonprehensile manipulation and legged locomotion tasks, the robot is firstly

modeled as an ideal system with a simplified dynamics and with available percep-

tual information. Under these hypotheses, it becomes easier to design planners

and controllers where dynamic manipulation issues can be brought back. In a

subsequent stage, the presence of the robot dynamics can be considered. The

effects of the robot dynamics on the accomplishment of tasks can be evaluated,

with the resulting adjustment of the corresponding implementation. Joint-space

controllers can be designed to consider also the effects of motor constraints in

the whole system. Additionally, the issues related to the perceptual information

retrieved from sensors can be considered. It is remarkable that the real-time re-
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Figure 1.1: Bottom-up approach to develop a unified control methodology for
dynamic manipulation.

quirement posed by the fast dynamics involved in this kind of dynamic tasks is

essential.

A bottom-up methodology is employed to deal with the generalization of the

proposed planning and control methods to classes of dynamic nonprehensile ma-

nipulation tasks. The Fig. 1.1 schematizes such approach, in which the class of

nonprehensile sliding manipulation [69] has been included, even if this is out of

the scope of this Thesis. As it is possible to figure out so far, a nonprehensile

manipulation action is a complex, skillful and dexterous task. It can be usually

undertaken by splitting in simpler subtasks, usually called primitives, such as

rolling, pushing, throwing, batting, dynamic catching, and so on. A supervi-

sory control is then required to detect, identify and switch between the available

primitives to perform the original complex dynamic nonprehensile manipulation

task. The pursued methodology is then to study step by step each nonprehensile

manipulation primitive, equipping this last with the proper motion planner and

controller. The primitives considered in this Thesis are related to:

• rolling tasks, involving a rolling constraint for balancing;

• impact tasks, which exhibit a hybrid dynamics due to intermittent contacts

between the object and the robot.
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This feature of impact manipulation resembles the dynamics of walking robots.

Therefore, due to their similarities, walking task is also considered and regarded

as a dynamic nonprehensile manipulation task.

In this Thesis, passivity-based approaches are considered for the class of non-

prehensile planar rolling. Some benchmarks within the class of rolling tasks are

the ball and beam system [42, 46, 83, 96], the circular ball and beam system

[7, 8, 99], the disk on disk [94, 95], and the butterfly robot [71, 113]. Be-

sides the classical Euler-Lagrange modeling approach to robotic systems, also

the Port-Hamiltonian systems formalism has been used for such tasks. Both

Euler-Lagrange and Port-Hamiltonian formalism are energy-based representa-

tions exposing in complementary manners different physical properties of the

systems related to the ways of energy processing, power flow and interconnection

structure. This allows to exploit them for the design of control algorithms for

tasks with non-negligible dynamics. Passivity-based control is chosen with the

aim to exploit its potentiality to stabilize the system with the contribution of

gravitational force, or centrifugal forces, avoiding the cancellation of the nonlin-

ear dynamics of the system, that for dynamic manipulation tasks might play a

relevant role. Shaping the energy of a mechanical system permits to deal with

not just stabilization, but also performance objectives [33]. In particular, the

method of interconnection and damping assignment passivity-based control (IDA-

PBC) is considered [84]. The IDA-PBC method provides analytic control laws,

taking advantage of the Lyapunov control theory to deal with the stability issues.

However, a bottleneck of the approach is the solution of the so-called matching

equations, which are typically a set of partial differential equations. In fact, a

control design using IDA-PBC is quite challenging to apply to the problem of

re-configuring a 3D rolling sphere on a plate [15, 61], or for impact manipulation

tasks [16, 98, 116]. Even if in the literature the control of rolling is treated in

detail also in the 3D situation [75, 34], in this Thesis the focus is on the 2D case

to better the IDA-PBC framework, and future investigation might lead to the 3D

extension.

Optimal planning and control theories are investigated for the class of impact

manipulation and for legged locomotion task, respectively. Regarding planning

and control of impact tasks, such as juggling [16, 38, 81, 88, 89, 98, 116], drib-

bling [12, 13, 43], batting [103, 121], etc. Such tasks require so high velocities

and precision that robotic companies take them as examples to display the high

performances of their products. For instance, Kuka has chosen the table tennis

game to promote its wares in a thrilling commercial spot1, showing the potential

1https://youtu.be/tIIJME8-au8
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abilities of robots. The Omron automation company has also broadcast a video

showing its parallel Delta robot playing table tennis and coaching humans at

CEATEC Japan 2015 exhibition2. In this Thesis, exploiting the emerging devel-

opment of fast solvers of linear and nonlinear problems [37, 66], and relying on the

technological advancement of the measurement systems, robust optimal motion

planning techniques are proposed to deal with nonprehensile manipulation and

locomotion tasks. For impact manipulation tasks [106, 107, 108], the proposed

methods are inspired by the works [26] and [120].

For the legged locomotion tasks, model predictive control (MPC) is the frame-

work employed in this Thesis. The MPC approach is an optimal control method

which, at each sampling time, requires the three following steps: measurement

of the actual state; computation of the control that optimizes a given state-

dependent cost function, on a finite horizon, starting from the current discrete

time; and, finally, application of the control input at the first-time index only

[74]. A main drawback of the standard approach is that the available theoretical

results of stability are presently limited to the linear case or to very particular

classes of nonlinear systems. For example, the nonlinear model predictive control

(NMPC) presents stability properties under certain assumptions. However, it

has some ability to handle constraints, which makes it well suited to the problem

of walking pattern synthesis and then control of bipedal robots, since they are

typically subject to unilateral constraints [53].

The first Sections of the Chapters 2, 3 and 4 briefly introduce the research

context, the motivations, and the main objectives of each investigated research

topic. Whereas, the corresponding last Sections are focused on the explanation

of the main scientific results and contribution of each Chapter.

2https://youtu.be/6MRxwPHH0Fc
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Chapter 2

Passivity-based Control of
Nonprehensile Planar
Rolling Manipulation

2.1 Introduction

This Chapter is focused on the nonprehensile planar rolling primitive, where

an actuated manipulator of a given shape, referred to as hand, manipulates an

object without grasping it, through rotations. The object can only roll upon the

hand’s shape, and the hand is actuated by a controlled torque, while the object is

unactuated. The goal of this work is the synthesis of passivity-based control laws

for planar rolling manipulation tasks between two arbitrary shapes. The control

objective is to balance the object and drive the hand to a desired configuration.

Planning and control of rolling on general curved shapes is also studied in [57].

The stabilization of a disk free to roll on an actuated disk (disk on disk

system) is introduced in [94, 95]. The ball and beam is a benchmark system

where a ball rolls on a one degree of freedom linear beam. It was extensively

studied in the past years because of its peculiar feature: it fails to have a well

defined relative degree, thus feedback linearization cannot be applied. The au-

thors of [46] propose an approximate input-output linearization of this nonlinear

systems. An output feedback controller is introduced in [115]. A flatness based

approach with an exact feedforward linearization is introduced in [44]. In [83] a

passivity-based control is applied to the problem of stabilization of some under-

actuated mechanical systems, like the ball and beam. The authors of [42] show
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a technique for obtaining stable and robust oscillations for the ball and beam

system, which consists of two steps. The first step aims at finding a control law

such that the closed-loop of a reduced model of the dynamics is a second order

Hamiltonian system which presents stable oscillations; in the second step, the

controller is extended to the full system using backstepping. In [96] a control

method for a redundant manipulator to balance the ball-beam system is showed.

The force/torque sensor attached to the end-effector of the manipulator is used for

estimating the ball position. Since it involves significant noise, a state feedback

controller is employed along with an observer.

In the literature, the circular ball and beam has been proposed as variation

of the ball and straight beam system where the lower disk (circular beam) has a

decentralized center of mass. The stabilization of such a system is challenging, as

compared to conventional ball and beam system, due to the presence of two un-

stable equilibrium points and the gyroscopic forces which should not be neglected

in its dynamics. Different linear and nonlinear control approaches are proposed

in the literature to deal with the balancing of this system [7, 8, 99]. This is a

system originally presented in [8], where the Jordan form of its model is linearized

near the unstable equilibrium to design a linear controller. A linear control ap-

proach is also used in the [7], where the limits of the beam actuator are taken

into account. Interestingly, a geometric passivity-based control approach for this

system is presented in [99]. Another complex nonprehensile planar rolling ma-

nipulation is the butterfly task, inspected by [25, 71, 113]. Nonprehensile rolling

systems where the center of mass (CoM) of the object does not coincide with its

geometric center are investigated in [50].

This Chapter provides an extension of the papers [32] and [64]. On one hand,

a control framework based on standard feedback linearization for nonprehensile

planar rolling manipulation is presented in [64]. The general model employed

in [64] contains the arclength parametrization of the object/hand shapes. Given

some assumptions on the shapes of both the object and the manipulator, a feed-

back linearization transforms the state-space system in a chain of integrators

form. Linear control theory is then used to stabilize the closed-loop system. On

the other hand, a passivity-based control for a single example of nonprehensile

planar rolling system, the disk on disk, is presented in [32]. A particular kind

of passivity-based control is proposed, related to interconnection and damping

assignment, known as IDA-PBC. This approach exploits the energy and inter-

connection properties of the physical system taking advantage its nonlinearities.

The IDA-PBC aims at finding a control law such that the closed-loop preserves

the Hamiltonian structure, with a minimum of the potential energy at the desired
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equilibrium, and a further damping injection to ensure asymptotic stability. The

control law is obtained by matching the open and desired closed-loops, and pro-

cessing that result in a set of partial differential equations. The IDA-PBC method

is here applied to both separable Hamiltonian systems, i.e. with constant mass

matrix, such as the disk on disk system, and non-separable Hamiltonian systems,

i.e. with non constant mass matrix, such as the ball and beam and the circular

ball and beam systems. The latter has relatively more complex dynamics with

respect to the former, that is a commonly studied system.

Firstly, a general model for separable planar rolling systems is considered.

The balancing of the disk on disk is used first as example to illustrate an ap-

plication of the control approach. Subsequently, a general analytic expression

of the desired potential energy is derived for the class of nonprehensile planar

rolling systems, with constant mass matrix. This function is obviously a solution

of the partial differential equations resulting from the matching equation. Re-

moving the assumption of constant mass matrix, a constructive method to solve

the matching equations for non-separable planar rolling systems is proposed with

the aim to reduce the design complexity, while preserving the effectiveness of

the IDA-PBC method. The methodology is inspired by the works [40, 83, 93].

The approach employs a target potential energy matching equation, depending

on a parametrization of the desired closed-loop mass matrix, to simultaneously

simplify the recognition of the desired mass matrix and select the desired energy

function for the closed-loop system. In particular the straight ball and beam, and

the circular ball and beam, are considered as further examples. The performances

of the controllers are validated with numerical tests in the Matlab/Simulink en-

vironment.

2.2 Nonprehensile Planar Rolling Manipulation
Dynamics

The dynamic model for nonprehensile planar rolling manipulation based on the

works [64, 95], for symmetric1 planar rolling, is reported in this Section, with an

extension in case of asymmetric planar rolling manipulation, i.e. removing the

assumption that the center of rotation of the hand corresponds to its geometric

center. This class of rolling manipulation is represented as planar underactuated

systems, with underactuation degree one.

1The term symmetric is here referred, with a slight abuse of language, to the correspondence
between the center of rotation and the geometric center, without any reference to the symmetry
of shapes.
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2.2.1 Symmetric Planar Rolling

The dynamic model of the class of symmetric planar rolling manipulation is here

derived.

Figure 2.1: A general nonprehensile planar rolling manipulation system. In red
the world fixed frame Σw. In green the hand frame Σh, while in blue the object
frame Σo, placed at the respective centers of mass.

Referring to Fig. 2.1, let Σw be the inertia world fixed frame, while let Σh be

the frame attached to the hand, and Σo the frame attached to the object. The

last two frames are located at their respective centers of mass. Let θh ∈ R be

the angle of the hand in Σw, while po ∈ R2 and θo ∈ R are the position and the

orientation, respectively, of Σo in Σw.

The shapes of both the object and the hand are represented through an

arclength parametrization: sh ∈ R and so ∈ R are the arclength parameters

for the hand and the object, respectively. At least locally, the shapes should

be of class C2. Locally, any point of the hand’s shape is given by the chart

chh(sh) =
[
uh(sh) vh(sh)

]T ∈ R2, expressed with respect to Σh, while any point

of the object’s shape is given by coo(so) =
[
uo(so) vo(so)

]T ∈ R2, expressed

with respect to Σo. Notice that sh increases counterclockwise along the hand,

while so increases clockwise along the object. With this choice, the pure rolling

assumption is ṡh = ṡo. Without loss of generality, the frames Σw and Σh coincide

at θh = 0, the point sh = 0 is at the intersection between the vertical (gravita-

tional) axis of Σw and the hand’s shape, i.e. ch(0) =
[
0 vh(0)

]T
in Σw, and

thus sh = so at all times during rolling. Therefore, the contact location will be

specified only by sh throughout the remainder of the paper.
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As first assumption, the hand and the object maintain pure rolling contact for

all time. The arclength parametrization implies the property ‖ch′h ‖= 1, with the

symbol ′ indicating the derivative with respect to the parameter sh. The same

holds for coo(sh). At the contact point chh(sh), the tangent vector to the shapes is

expressed as th(sh) = ch′h ∈ R2 forming an angle φh(sh) = atan2(v′h(sh), u′h(sh))

in Σh. The same tangent can be expressed with respect to Σo with an angle

φo(sh) = atan2(v′o(sh), u′o(sh)). The signed curvatures of the shapes are defined

as

κh(sh) = φ′h(sh) = u′h(sh)v′′h(sh)− u′′h(sh)v′h(sh), (2.1a)

κo(sh) = φ′o(sh) = u′o(sh)v′′o (sh)− u′′o(sh)v′o(sh). (2.1b)

The relative curvature at the contact point is given by

κr(sh) = κh(sh)− κo(sh). (2.2)

Notice that κh(sh) > 0 and κo(sh) < 0 denote convexity at the contact point

for the hand and the object, respectively. Hence, κr(sh) > 0 guarantees a single

contact point at least locally [95]. The following constraint expresses the angle

of the tangent th(sh) with respect to Σw: θh + φh(sh) = θo + φo(sh). Therefore,

taking into account (2.2), the following relations hold

θo = θh + φh(sh)− φo(sh), (2.3a)

θ̇o = θ̇h + κr(sh)ṡh. (2.3b)

The following constraint expresses instead the coincidence between the contact

points on both the hand and the object

ph +R(θh)chh(sh) = po +R(θo)c
o
o(sh), (2.4)

where ph ∈ R2 is the position of Σh in Σw, while R(θ) ∈ SO(2) is the rotation

matrix in the 2D space. Notice that the relation Ṙ(θ) = R(θ̄)θ̇ holds with

θ̄ = θ + π
2 .

Another important assumption, for now, is that the hand can only rotate

around its CoM. Therefore, without loss of generality, placing Σw at the hand’s

CoM and taking into account (2.4) yield

po = R(θh)chh(sh)−R(θo)c
o
o(sh), (2.5)

and

ṗo = γ(q)θ̇h + η(q)ṡh =
[
γ(q) η(q)

]
q̇, (2.6)
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with q =
[
q1 q2

]T
=
[
θh sh

]T
, and

γ = R(θ̄h)chh −R(θ̄o)c
o
o, (2.7a)

η = R(θh)ch′h −R(θo)c
o′
o − κrR(θ̄o)c

o
o, (2.7b)

in which dependencies have been dropped, while (2.3b) is included and (2.3a) has

to be plugged in.

Hence, considering the given assumption, the dynamic model is derived through

the Euler-Lagrange formalism. The kinetic and potential energy for a nonpre-

hensile planar rolling manipulation task are respectively given by

T (q, q̇) =
1

2

(
Ihθ̇

2
h +moṗ

T
o (q, q̇)ṗo(q, q̇) + Ioθ̇

2
o(q)

)
=

1

2
q̇TM(q)q̇ (2.8)

and

V (q) = mog
[
0 1

]T
po(q), (2.9)

where mo is the object mass, Ih and Io are the hand and object inertia, re-

spectively, computed with respect to Σh and Σo, g is the gravity acceleration,

M(q) ∈ R2×2 is the symmetric and positive definite mass matrix whose elements

are

b11(q) = Ih + Io +moγ
T (q)γ(q), (2.10a)

b12(q) = b21(q) = Ioκr(sh) +moγ(q)Tη(q), (2.10b)

b22(q) = Ioκ
2
r(sh) +moη(q)Tη(q). (2.10c)

Consequently, the Lagrangian function is given by

L(q, q̇) =
1

2
q̇TM(q)q̇− V (q). (2.11)

By computing the Lagrange equations [110], the dynamic model can be written

as

M(q)q̈ +C(q, q̇)q̇ +∇V (q) = G(q)τ, (2.12)

where τ is the actuating torque around the CoM of the hand,

g(q) =
[
g1(q) g2(q)

]T
= ∇V (q)

and C(q, q̇) ∈ R2×2 is a suitable matrix whose generic element is given by

cij(q, q̇) =
1

2

2∑
k=1

(
∂bij(q)

∂qk
+
∂bik(q)

∂qj
+
∂bjk(q)

∂qi

)
q̇k, (2.13)
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Figure 2.2: The general nonprehensile planar rolling manipulation system with
the center of rotation of the hand (indicated by the × symbol) not corresponding
to its geometric center. In red the world fixed frame Σw. In green the hand frame
Σh, while in blue the object frame Σo, placed at the respective centers of mass.

with i, j = 1, 2. The dynamic model can be written in the following extended

form, dropping the dependencies,

b11θ̈h + b12s̈h + c11θ̇h + c12ṡh + g1 = τ, (2.14a)

b12θ̈h + b22s̈h + c21θ̇h + c22ṡh + g2 = 0, (2.14b)

with

g1 = mog

(
−vhsθh − vo

∂cθo
∂θh

+ uhcθh − uo
∂sθo
∂θh

)
, (2.15a)

g2 = mog(v′hcθh − v′ocθo − voc′θo + u′hsθh − u′osθo − uos′θo), (2.15b)

in which (2.3a) has to be plugged in, the elements of C(q, q̇) are omitted for

brevity, and cθ and sθ are used instead of cos θ and sin θ, respectively.

2.2.2 Asymmetric Planar Rolling

The dynamic model of the asymmetric version of a nonprehensile planar rolling

system is now derived. In this asymmetric version of the system, the center of

rotation of the hand does not correspond to its geometric center, therefore the

assumption that the hand can only rotate around its CoM has been removed.

Referring to Fig. 2.2, let Σw be the inertia world fixed frame, which is without
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loss of generality attached at the holder where the hand is actuated (i.e., the

center of rotation of the hand). Also, let Σh be the frame attached to the CoM of

the hand, while Σo is the frame attached to the CoM of the object. Let θh ∈ R be

the angle of the hand in Σw, while po ∈ R2 and θo ∈ R are the position and the

orientation, respectively, of Σo in Σw. The position of the CoM of the hand in

Σw is denoted by ph(θh) =
[
uw(θh) vw(θh)

]T ∈ R2. For the asymmetric version

of the system, the coincidence between the contact points on both the hand and

the object is expressed by

ph(θh) +R(θh)chh(sh) = po +R(θo)c
o
o(sh), (2.16)

yielding to

po = ph(θh) +R(θh)chh(sh)−R(θo)c
o
o(sh), (2.17)

and

ṗo = γ(q)θ̇h + η(q)ṡh =
[
γ(q) η(q)

]
q̇, (2.18)

with

γ = p8h +R(θ̄h)chh −R(θ̄o)c
o
o, (2.19a)

η = R(θh)ch′h −R(θo)c
o′
o − κrR(θ̄o)c

o
o, (2.19b)

in which dependencies have been dropped, while (2.3b) is included and (2.3a) has

to be plugged in. The symbol 8 indicates the derivative with respect to θh. For

this class of system, where the only assumption is the preservation of the pure

rolling contact for all time between the hand and the object, the kinetic energy

for an asymmetric planar rolling system becomes

T (q, q̇) =
1

2

(
Ihθ̇

2
h +mhṗ

T
h (θh)ṗh(θh) +moṗ

T
o ṗo + Ioθ̇

2
o

)
=

1

2
q̇TB(q)q̇, (2.20)

with the following elements for the mass matrix

b11(q) = Ih + Io +mhp
8T
h p

8
h +moγ

T (q)γ(q), (2.21a)

b12(q) = b21(q) = Ioκr(sh) +moγ(q)Tη(q), (2.21b)

b22(q) = Ioκ
2
r(sh) +moη(q)Tη(q). (2.21c)

The potential energy becomes

V (q) = g
[
0 1

]
(mopo(q) +mhph(q)). (2.22)
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By computing the Lagrange equations, the dynamic model for the asymmetric

version of the planar rolling manipulation can be written in the following form

b11θ̈h + b12s̈h + c11θ̇h + c12ṡh + g1 = τh, (2.23a)

b12θ̈h + b22s̈h + c21θ̇h + c22ṡh + g2 = 0, (2.23b)

with

g1 = g(mocθhuh −mosθhvh + (mh +mo)v
8
w +mo(sθovo − cθouo)θ8o), (2.24a)

g2 = mog(sθhu
′
h + cθhv

′
h − cθo(v′o + uoθ

′
o) + sθo(−u′o + voθ

′
o)), (2.24b)

in which (2.3a) has to be plugged in, the elements of C(q, q̇) are omitted for

brevity.

2.3 IDA Passivity-based Control

The Port-Hamiltonian framework allows modeling of mechanical systems, pre-

serving physical phenomenon information. The dynamical system is intended as

an energy-transformation device and the action of a controller is understood in

energy terms.

The dynamics of the nonprehensile planar rolling system in generalized coor-

dinates considered in (2.12) is described using the Euler-Lagrange formalism. In

classical mechanics, the conjugate generalized momentum, p =
[
p1, p2

]T ∈ R2,

is defined as p = ∇q̇L(q, q̇) = M(q)q̇. Using the momentum and the generalized

coordinate vector, the Euler-Lagrange equations can be transformed, using the

transformation of Legendre, into a set of first order differential equations known

as Hamiltonian canonical equations of motion[
q̇
ṗ

]
=

[
02×2 I2×2
−I2×2 02×2

]
∇H+

[
0
G

]
τ, (2.25)

where I2×2,02×2 ∈ R2×2 are respectively the identity and the zero matrix, and

0 ∈ R2 is the zero vector. The Hamiltonian function, H, represents the total

energy of the system, and is given by

H(q,p) = q̇Tp− L, (2.26)

where q̇ = q̇(q,p). The Hamiltonian equations (2.25) provide a particular state-

space representation of the system dynamics equivalent to the Euler-Lagrange

model (2.12). Besides, Hamiltonian models are more general in the sense that
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there are systems that admit Hamiltonian but not Lagrangian representations

[60].

Within the IDA-PBC, stabilization is achieved assigning to the closed-loop

the target dynamics [
q̇
ṗ

]
=

[
02×2 M−1Md

−MdM
−1 J2

]
∇Hd, (2.27)

where J2 = −JT2 is the desired interconnection matrix, depending on q and p,

and Hd is the desired total energy function

Hd(q,p) =
1

2
pTM−1

d (q)p+ Vd(q), (2.28)

with desired mass matrix Md(q) = Md(q)T > 0, and desired potential energy

function Vd(q). The condition under which (q∗, 0) is a stable equilibrium point

of the closed-loop (2.27) with Lyapunov function Hd(q,p) is

q∗ = argminHd(q,p) = argminVd(q), (2.29)

that corresponds to the respectively necessary and sufficient conditions on Vd(q
∗)

• ∇Vd(q∗) = 0,

• ∇2Vd(q
∗) > 0.

The stabilization of the desired equilibrium is achieved by identifying the class

of Hamiltonian systems that can be obtained via feedback. The conditions under

which this feedback law exists are called matching conditions, i.e. matching the

original dynamic system (2.25) and the target dynamic system (2.27)[
02×2 I2×2

−I2×2 02×2

]
∇H(p, q)+

[
0
G

]
τ =

[
02×2 M−1(q)Md(q)

−Md(q)M−1(q) J2(q,p)

]
∇Hd(p, q),

(2.30)

The matching conditions correspond to the following set of nonlinear partial

differential equations (PDEs)

G⊥
(
∇qH(q,p)−Md(q)M−1(q)∇qHd(q,p) + J2(q,p)M−1

d (q)p
)

= 0, (2.31)

with the full rank left annihilator G⊥ =
[
0 1

]
of G, for the class of mechanical

systems under study. The PDEs (2.31) can be separated in two sets of PDEs

G⊥
(
∇q(pTM−1(q)p)−Md(q)M−1(q)∇q(pTM−1

d (q)p) + 2J2(q,p)M−1
d (q)p

)
= 0,

(2.32)

G⊥
(
∇V (q)−Md(q)M−1(q)∇Vd(q)

)
= 0,

(2.33)
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where (2.32) are named kinetic energy PDEs, and (2.33) are named potential

energy PDEs.

If the sets of PDEs (2.32)-(2.33) are solved, and the conditions on Md(q),

Vd(q), J2(q) are respected, the energy shaping control τes results

τes = (GTG)−1GT (∇qH(q,p)−Md(q)M−1(q)∇qHd(q,p) + J2(q,p)M−1
d (q)p).

(2.34)

By applying (2.34) to the Hamiltonian dynamics (2.25) the closed-loop target

dynamics (2.27) is obtained. A damping term, τdi, aimed at achieving asymptotic

stability, is then injected through

τdi = −kvGT∇pHd(q,p), (2.35)

where kv is a positive scalar gain. The damping injection (2.35) and the energy

shaping control (2.34) are then assembled to generate the IDA-PBC

τ = τes + τdi. (2.36)

Therefore, the closed-loop target dynamics is shaped as[
q̇
ṗ

]
=

[
02×2 M−1Md

−MdM
−1 J2 −Rd

]
∇Hd, (2.37)

in which dependencies have been dropped, and Rd = kvGG
T > 0 is the dissipa-

tion matrix [82, 83].

2.4 Proposed Approach for Constant Mass Ma-
trix

The class of separable nonprehensile planar rolling manipulation, such as for

example the disk on disk, is initially considered. This can be modeled through

the Hamiltonian canonical equations, equivalent to the dynamics (2.12), with

Hamiltonian function given by (2.26), and with the constant mass matrix

M =

[
b11 b12
b12 b22

]
= MT > 0. (2.38)

In this approach, it is assumed to parametrize the constant desired inertia matrix

satisfying the conditions of positive definiteness and symmetry, as follows

Md =

[
a11 a12
a12 a22

]
= MT

d > 0. (2.39)
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Now, the desired potential energy function Vd(q) must be found. The PDEs

(2.32) and (2.33) are reduced to

G⊥
(
2J2(q,p)M−1

d p
)

= 0, (2.40)

G⊥
(
∇V (q)−MdM

−1∇Vd(q)
)

= 0. (2.41)

The first PDE (2.40) can be solved choosing the trivial zero matrix J2(q,p) =

02×2, while the second PDE (2.41) provides a candidate desired potential energy

function. Replacing the desired mass matrix (2.39), the mass matrix (2.38), the

G⊥ vector, and the gradient of the potential energy ∇Vd(q), the potential energy

target equation (2.41) to solve with respect to Vd(q) becomes

∇θhVd(q)(a12b22− a22b12) +∇shVd(q)(a22b11− a12b12) + g2(q)(b212− b11b22) = 0,

(2.42)

that, for the symmetric nonprehensile planar rolling manipulation, corresponds

to

c1∇θhVd(q) + c2∇shVd(q) +mog (−u′o(sh) sin(krsh + θh)− kruo(sh) cos(krsh + θh))

−mog (v′o(sh) cos(krsh + θh) + krvo(sh) sin(krsh + θh) + sin(θh)u′h(sh))

−mog (cos(θh)v′h(sh)) = 0, (2.43)

where

c1 =
a12b22 − a22b12
b212 − b11b22

, (2.44)

and

c2 =
a22b11 − a12b12
b212 − b11b22

, (2.45)

and the expression of g2(q) is replaced from (2.15b).
The solution Vd(q) of the PDE (2.43), obtained thanks to the symbolic com-

putation program Mathematica, is∫ θh

1

1

c1

(
gmo sin(krψ(τ, q) + τ)u′o(ψ(τ, q)) + gkrmouo(ψ(τ, q)) cos(krψ(τ, q) + τ)

)
+

1

c1

(
gmo cos(krψ(τ, q) + τ)v′o(ψ(τ, q))− gkrmovo(ψ(τ, q)) sin(krψ(τ, q) + τ)

)
−

1

c1

(
gmo sin(τ)u′h(ψ(τ, q))− gmo cos(τ)v′h(ψ(τ, q))

)
dτ + f

(
sh −

c2θh
c1

)
, (2.46)

where ψ(τ, q) = sh + c2(τ−θh)
c1

and f(·) is a generic function of its argument.
This result can be applied to find the desired potential energy for a symmet-

ric planar rolling manipulation system modeled by a separable dynamics. The

18



general closed form solution for Vd can be used taking into account the particular
shapes of object and hand through a specific arclength parametrization. There-
fore, there is not need to solve again the matching equations for each example
that verifies the considered assumptions. In case of non-separable dynamics, the
general potential energy target equation (2.43), which depends on the shapes of
the contacting objects, becomes impossible to solve.

2.4.1 Disk on Disk Application

Figure 2.3: A representation of the disk on disk system. In red the world fixed
frame Σw. In green the hand frame Σh, while in blue the object frame Σo, placed
at the respective centers of mass.

As example, the model presented in [64] for the balancing of a disk free to roll
on an actuated disk is considered. Referring to Fig. 2.3, the shape of the hand,
i.e. the actuated disk, is parametrized by the chart

chh(sh) = ρh
[
− sin sh

ρh
cos shρh

]T
, (2.47)

with ρh ∈ R+ the radius of the hand. The shape of the object is parametrized
by the chart

coo(sh) = −ρo
[
sin sh

ρo
cos shρo

]T
, (2.48)

with ρo ∈ R+ the radius of the ball. Considering (2.2), the relative curvature is
given by

κr =
ρh + ρo
ρhρo

. (2.49)
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Table 2.1: Elements of the dynamic model for the disk on disk example.

b11 Ih + Io +mo(ρh + ρo)
2

b12, b21 Ioκr +mo
(ρh+ρo)

2

ρh

b22 Ioκ
2
r +moρ

2
oκ

2
r

g1 −mog(ρh + ρo) sin
(
θh + sh

ρh

)
g2 −mogρoκr sin

(
θh + sh

ρh

)

The upper disk angular velocity is given by θ̇o = θ̇h + κr ṡh. The vectors γ(q)
and η(q) are computed like in (2.7):

γ(q) = −(ρh + ρo)
[
cos
(
θh + sh

ρh

)
sin
(
θh + sh

ρh

)]T
, (2.50)

and

η(q) = −ρoκr
[
cos
(
θh + sh

ρh

)
sin
(
θh + sh

ρh

)]T
. (2.51)

The resulting elements of the dynamics (2.14) are detailed in Table 2.1, with
c11 = c12 = c21 = c22 = 0, as derived from (2.13). Notice that the quantity
θh + sh

ρh
is the angle of the object’s CoM with respect to the vertical axis of Σw.

For this system, replacing the charts representing the shapes of hand/object
(2.47) (2.48) and the relative curvature (2.49), and integrating with Mathematica,
the desired potential energy function (2.46) becomes

Vd(q) = −
gmo(ρo + ρh)

(
cos
(
θh + sh

ρh

)
− cos

(
c1(sh+ρh)+c2(−θh)+c2

c1ρh

))
c1ρh + c2

+f

(
sh −

c2θh
c1

)
,

(2.52)

where c1, c2 derive from (2.44) and (2.45). This function Vd(q) obviously satisfies
the potential energy matching equation for the disk on disk system. With an
appropriate choice of the function f(·), the potential energy (2.52) can be related
to the one proposed in [32], where a possible constant positive definite mass
matrix Md is proposed, together with the conditions on the gains such that the
Vd(q) has a minimum at the equilibrium.

2.4.2 Approximated Ball and Beam Application

As further example, the traditional ball and beam benchmark system is consid-
ered. Referring to Fig. 2.4, the beam can rotate around its CoM while the ball can
only roll along the beam. The shape of the hand, i.e. the beam, is parametrized

20



Figure 2.4: A representation of the ball and beam system. In red the world fixed
frame Σw. In green the hand frame Σh, while in blue the object frame Σo, placed
at the respective centers of mass.

through the chart

chh(sh) =
[
−sh dh

]T
, (2.53)

with dh ∈ R+ a fixed distance between the beam’s CoM and its surface where
the ball rolls. The shape of the object, i.e. the ball, is parametrized by the chart

coo(sh) = −ρo
[
sin sh

ρo
cos shρo

]T
, (2.54)

with ρo ∈ R+ the radius of the ball. Considering (2.2), the signed curvatures of
the beam and the ball are κh = 0 and κo = −1/ρo, respectively. The relative
curvature is thus given by

κr = 1/ρo. (2.55)

The ball’s angular velocity is instead given by (2.3b) as θ̇o = θ̇h+
ṡh
ρo

. In order to

compute the mass matrix of the system, the vectors γ(q) and η(q) in (2.7) are

γ(q) =
[
−(ρo + dh)cθh + shsθh −(ρo + dh)sθh − shcθh

]T
, (2.56)

and
η(q) = −

[
cθh sθh

]T
. (2.57)

Therefore, the resulting elements of the dynamics (2.14) are reported in Table
2.2, where cb1 = Ih + Io +mod

2
h + 2modhρo +moρ

2
o and cb2 = mo. The Coriolis

elements c11, c12, c21, c22 can be derived from (2.13).
The mass matrix is clearly not constant for the ball and beam, since b11 =

b11(sh). This model is well known in the literature, nevertheless, in many cases
it is possible to approximate b11(sh) neglecting the square of sh. This is true for
small velocities of the beam, small masses of the ball and not so long beam [47].
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Table 2.2: Elements of the dynamic model for the ball and beam example.

b11 cb1 + cb2s
2
h

b12, b21
Io
ρo

+modh +moρo

b22
Io
ρ2o

+mo

g1 −mog((dh + ρo) sin θh + sh cos θh)

g2 −mog sin θh

Hence, by putting b11 = cb1, only for control purposes, it is possible to consider
the ball and beam as a separable system. The same approximation is used in
the work [64]. For this system, replacing the charts representing the shapes of
hand/object (2.53) (2.54) and the relative curvature (2.55), and integrating with
Mathematica, the desired potential energy function (2.46) becomes

Vd(q) = −gmo cos(θh)

c1
+ f

(
sh −

c2θh
c1

)
, (2.58)

where c1, c2 derive from (2.44) and (2.45). This function Vd(q) obviously satisfies
the potential energy matching equation for the approximated ball and beam
system. The constant parameters a11, a12, a22 of desired mass matrix Md should
then be properly tuned. In the following, the complete model of the ball and
beam system is employed in order to apply a more general derivation of the
control law.

2.5 Proposed Approach for Non-constant Mass
Matrix

In this Section the objective is to extend the study to non-separable nonprehensile
planar rolling systems. A systematic approach to solve the matching equations is
proposed employing a target potential energy matching equation, which depends
on a parametrization of the desired closed-loop mass matrix, to simultaneously
simplify the recognition of the desired mass matrix and select the desired po-
tential energy function for the closed-loop system. This method simplifies the
solution of the PDEs imposed by the matching conditions. The authors of [40]
propose to transform the PDEs derived from the kinetic energy matching con-
dition in nonlinear ODEs through a parametrization of the desired closed-loop
mass matrix. With the similar purpose to simplify the solution of the PDEs, a
different parametrization of the closed-loop mass matrix is designed to simplify
the solution of the potential energy PDEs. On one hand, the proposed expression
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of the desired closed-loop mass matrix provides directly a solution of the poten-
tial energy PDEs. On the other hand, the kinetic energy matching condition is
satisfied exploiting the technique proposed in [93].

This Section is focused on the class of nonprehensile planar rolling systems
that can be modeled through the Hamiltonian canonical equations, equivalent to
the dynamics (2.12), with the Hamiltonian function (2.26), with mass matrix

M(q) =

[
b11(q) b12(q)
b12(q) b22(q)

]
= M(q)T > 0, (2.59)

and G⊥ = eT2 =
[
0 1

]
. The first step towards the solution of the matching

conditions is related to the potential energy PDE and to the conditions of sym-
metry and positive definiteness of the desired closed-loop mass matrix. In order
to satisfy the potential energy matching equation, the desired inertia matrix is
parametrized as follows

Md(q) = ∆

[
a11(q) a12(q)
a12(q) a22(q)

]
= Md(q)T (2.60)

where ∆ = b11(q)b22(q) − b212(q) > 0 is the determinant of M(q). Under this
assumption, the potential energy matching equation (2.33) becomes

eT2

([
g1(q)
g2(q)

]
− Γ

[
∇θhVd(q)
∇shVd(q)

])
= 0, (2.61)

where

Γ =

[
a11(q)b22(q)− a12(q)b12(q) a12(q)b11(q)− a11(q)b12(q)
a12(q)b22(q)− a22(q)b12(q) a22(q)b11(q)− a12(q)b12(q)

]
, (2.62)

and then

g2(q)−(a12(q)b22(q)−a22(q)b12(q))∇θhVd(q)−(a22(q)b11(q)−a12(q)b12(q))∇shVd(q) = 0
(2.63)

The two functions, α(q) and β(q), are supposed to group the terms that multiply
respectively ∇θhVd(q) and ∇shVd(q) in (2.63). Hereafter, α(q) and β(q) can be
selected such that the following target potential energy matching equation has
always a solution Vd(q) and a minimum in the equilibrium

g2(q) + α(q)∇θhVd(q) + β(q)∇shVd(q) = 0. (2.64)

After that the functions α(q) and β(q) are fixed, the functions a12(q) and a22(q)
of the desired mass matrix Md(q) can be retrieved imposing the following alge-
braic system of equations

a22(q)b12(q)− a12(q)b22(q) = α(q), (2.65)

a12(q)b12(q)− a22(q)b11(q) = β(q).
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Consequently, grouping the determinant of the open-loop mass matrix, the solu-
tion results

a12(q) = −α(q)b11(q) + β(q)b12(q)

∆
, (2.66)

a22(q) = −α(q)b12(q) + β(q)b22(q)

∆
.

Therefore, the proposed desired closed-loop mass matrix is given by

Md(q) =

[
∆a11(q) −(α(q)b11(q) + β(q)b12(q))

−(α(q)b11(q) + β(q)b12(q)) −(α(q)b12(q) + β(q)b22(q))

]
, (2.67)

which is structurally symmetric. Moreover, the positive definiteness of the desired
closed-loop mass matrix corresponds to the following conditions in a11(q):

• a11(q) > 0;

• a11(q)a22(q)− a212(q) > 0.

Selecting the element a11(q) of the desired mass matrix as follows

a11(q) =
kaa

2
12(q)

a22(q)
> 0, (2.68)

where ka ∈ R is a constant parameter, both conditions on a11(q) are respected
if the choice of the functions α(q) and β(q) is such that a22(q) > 0, i.e.

(α(q)b12(q) + β(q)b22(q)) < 0. (2.69)

In fact, in this case, the determinant of Md(q) is always positive

a11(q) >
a212(q)

a22(q)
, (2.70)

assuming that ka > 1. Consequently, the condition about the positive definiteness
of Md(q) is satisfied, and the proposed desired mass matrix becomes

Md(q) =

−ka(α(q)b11(q) + β(q)b12(q))2

(α(q)b12(q) + β(q)b22(q))
−(α(q)b11(q) + β(q)b12(q))

−(α(q)b11(q) + β(q)b12(q)) −(α(q)b12(q) + β(q)b22(q))

 .
(2.71)

Selecting in this wayMd(q) and Vd(q) ensures that the first step of the IDA-PBC
design is accomplished, meaning that the potential energy matching condition is
satisfied.
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Subsequently, the degree of freedom given by the matrix J2(q,p) is used to
satisfy the kinetic energy matching equation. Whereas the solution of the poten-
tial energy matching target equation is completely novel, the approach proposed
by [93] is followed to deal with the kinetic energy matching equation without
solving any PDE. The kinetic energy PDE (2.32) can be expressed as

eT2∇q(pTM−1(q)p)− eT2 Md(q)M−1(q)∇q(pTM−1
d (q)p)− 2j2(q,p)eT1 M

−1
d (q)p = 0,

(2.72)

since G⊥ = eT2 and eT2 J2(q,p) = −j2(q,p)eT1 , where eT1 =
[
1 0

]
and

J2(q,p) =

[
0 j2(q,p)

−j2(q,p) 0

]
. (2.73)

Since the desired mass matrix is fixed, the function j2(q,p) can be easily obtained
solving (2.72) as an algebraic equation

j2(q,p) =
eT2∇q(pTM

−1(q)p)− eT2Md(q)M−1(q)∇q(pTM−1
d (q)p)

2eT1M
−1
d (q)p

. (2.74)

Finally, the control law can be computed from the standard equation (2.36).
Notice that, on one hand, the main complexity within the proposed approach

is related to the presence of possible singular solutions of (2.74), that can be
anyway numerically managed. The method used to satisfy the kinetic energy
matching equation, inspired by the work [93], provides a solution that is not
always well defined. Close to the equilibrium, the numerator of (2.74), which
has a quadratic dependence on p, tends towards zero faster than the denomina-
tor, which depends linearly on p, thus avoiding any singularity issues. Despite
this, a study about the denominator of the relation (2.74) reveals that it might
be nullified if the equality (b12(q) + b22(q)k)p1 = (b11(q) + b12(q)k)p2 holds.
This situation is addressed in practice by saturating the denominator of (2.74)
when its absolute value is under a small enough threshold. On the other hand,
through the method described in this Section, once the two functions α(q) and
β(q) (providing a solution of the potential energy PDE, with a minimum in the
equilibrium, and satisfying the condition (2.69)) are retrieved, an IDA-PBC can
be generally designed for separable and non-separable systems, under the above
mentioned conditions. The main advantage of this approach is that the set of
nonlinear PDEs associated to the matching conditions is transformed in a set
of algebraic equations, that, with a constructive method, allows to take into ac-
count the full nonlinear dynamics of the rolling systems for the IDA-PBC design.
Also in the work [99] the authors propose a technique to avoid the solution of
the matching conditions, and design a passivity-based control to shape the en-
ergy of a non-separable system, i.e. the circular ball and beam. Nevertheless,
the method presented in [99] does not consider the gyroscopic term for control,
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since the energy shaping is applied to a modified dynamics resulting from a ge-
ometric feedback transformation. Moreover, in the derivation proposed within
this Thesis, the open-loop mass matrix and the desired closed-loop mass matrix
can be dependent on both actuated and unactuated variables, differing from the
approaches presented in [40, 83], where a necessary condition for the validity of
the methods is that the mass matrix of the system depends only on the unac-
tuated variable, in order to simplify the solution of the kinetic energy matching
equations.

In the following Sections some applications of this methodology for non-
separable systems are detailed, and numerical tests are presented to bolster the
performance of the proposed control laws.

2.5.1 Ball and Beam Application

The previously introduced ball and beam case study is considered again, with
dynamics (2.14), in which the elements of the non constant mass matrix

M(sh) =

[
b11(sh) b12
b12 b22

]
(2.75)

are detailed in Table 2.2. The potential energy of this system is

V (q) = mog((dh + ρo) cos(θh)− sh sin(θh)). (2.76)

Control designs for the ball and beam system are derived with other energy
based approaches in [40, 83]. In these works the system is represented with a
different model, that does not take into account the distance between the beam’s
CoM and its surface where the ball rolls.

According to the procedure illustrated in the previous Section, the expression
of α(q) and β(q) have to be found such that the PDE (2.64) has a solution Vd(q),
with the properties of the desired potential energy function, and such that the
condition (2.69) to obtain a positive definite desired mass matrix is satisfied.

Therefore, it is proposed α(θh) = ksinc(θh)2 and β(θh) = −sinc(θh), where
k ∈ R is a constant parameter to tune. Replacing these functions in (2.64), the
target potential energy matching equation results

−mog sin(θh) + ksinc(θh)∇θhVd(q)− sinc(θh)∇shVd(q) = 0, (2.77)

which solution can be found in Mathematica as

Vd(q)→ mogθ
2
h

2k
+ f

(
θh + ksh

k

)
, (2.78)

2Notice that the sinc(·) function is analytic everywhere since: sinc(x) =
sin(x)
x

= 1, for
x = 0.
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where f(·) is a generic function of its argument. Therefore, the following desired
potential function is proposed

Vd(q) =
mogθ

2
h

2k
− cos

(
kf
k

(θh + k(sh − s∗h))

)
, (2.79)

where s∗h defines the desired equilibrium q∗ = (0, s∗h).
Moreover, it is verified that the Jacobian of (2.79),

∇Vd(q) =

mog
k θh +

kf
k sin

(
kf
k (θh + k(sh − s∗h))

)
kf sin

(
kf
k (θh + k(sh − s∗h))

)  (2.80)

is zero at the desired equilibrium, and the Hessian of (2.79)

∇2Vd(q) =

mog
k

+
k2f
k2

cos
(
kf
k

(θh + k(sh − s∗h))
)

k2f
k

cos
(
kf
k

(θh + k(sh − s∗h))
)

k2f
k

cos
(
kf
k

(θh + k(sh − s∗h))
)

k2f cos
(
kf
k

(θh + k(sh − s∗h))
)


(2.81)

is positive definite at the desired equilibrium if k > 0 and kf 6= 0, with kf ∈ R.
The desired potential function has then a minimum in the equilibrium.

The next step consists in the computation of the entries a12(q) and a22(q) of
Md(q). Replacing α(θh) and β(θh) in (2.66) yields

a12(q) = −sinc(θh)(kb11(sh)− b12)

∆
, (2.82)

a22(q) = −sinc(θh)(kb12 − b22)

∆
,

where ∆ > 0 is the determinant of (2.75). In addition, a11(q) is selected as in
(2.68)

a11(q) = −ka(kb11(sh)− b12)2

∆(kb12 − b22)
> 0, (2.83)

imposing 0 < k < b22
b12

, and verifying that

a11(q) > −sinc(θh)(kb11(sh)− b12)2

∆(kb12 − b22)
, (2.84)

where the condition ka > 1 must hold. Consequently, the condition (2.69) on
α(q) and β(q) is satisfied, and then the desired mass matrix is positive definite.

As remark, notice that 0 < sinc(θh) < 1 if −π < θh < π, then within the
domain of interest of θh the sinc(·) function is positive. Additionally, for this
application the inequality b22

b12
> 0 is true, and therefore the condition on k is

well-posed.
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According to (2.60), the proposed desired mass matrix is

Md(q) =

[
−ka(kb11(sh)−b12)

2

(kb12−b22) −sinc(θh)(kb11(sh)− b12)

−sinc(θh)(kb11(sh)− b12) −sinc(θh)(kb12 − b22)

]
. (2.85)

This choice of Md(q) and Vd(q) allows to satisfy the potential energy matching
equation. The kinetic energy matching equation (2.32) is fulfilled employing
(2.74). Finally, the IDA-PBC control law is computed from the standard equation
(2.36).

Ball and Beam Simulations

Some simulation tests are implemented in the Matlab/Simulink environment to
validate the IDA-PBC approach with non constant mass matrix for the ball and
beam case study. The parameters employed for simulations are mo = 0.05 kg,
ρo = 0.1 m, Io = moρ

2
o for the ball, dh = 0.01 m, Ih = 0.02 m2kg for the beam,

and g = 9.81 m/s2.
Fig. 2.5 shows the results obtained in the first case study, where the initial

conditions are θh(0) = 0.2 rad, θ̇h(0) = 0.01 rad/s, sh(0) = 0 m, ṡh(0) = 0 m/s.
The desired value for the contact position is s∗h = 0 m, therefore q∗ = (0, 0). The
gains k = 4, ka = 10, kv = 10 and kf = 1 are chosen for the control law. In

particular, in Fig. 2.5(a), 2.5(c), 2.5(b) and 2.5(d), the time-series θh(t), θ̇h(t),
sh(t), and ṡh(t) are respectively shown; while Fig. 2.5(e) and Fig. 2.5(f) depict
the evolution of the total energy given by the Hamiltonian function H(t) and the
control torque τ(t) with respect to time. The pictures confirm that the control
action is able to drive the state to the desired configuration, with a smooth control
torque.

Fig. 2.6 shows the evolution of the controlled ball and beam system in the
phase plane for different initial conditions, assuming that the desired configu-
ration and the gains are not changed. In particular, (θh(0), θ̇h(0), sh(0), ṡh(0))
are assigned as (0.1, 0, 0.1, 0) in the black line, (−0.1, 0, 0.1, 0) in the blue line,
(0.1, 0,−0.1, 0) in the red line, and (−0.1, 0,−0.1, 0) in the green line. Moreover,
Fig. 2.7 depicts the surface of the desired potential function Vd, confirming that
it has a minimum in the equilibrium. The red line represents the 3D evolu-
tion of Vd(t) in (2.79) with respect to θh(t) and sh(t), for the initial conditions
(θh(0), θ̇h(0), sh(0), ṡh(0)) = (−0.1, 0,−0.1, 0).

Another test is performed considering the desired configuration q∗ = (0, 0.08),
and the initial conditions (θh(0), θ̇h(0), sh(0), ṡh(0)) = (0, 0.1, 0, 0.05), see Fig. 2.8.
In particular, in Fig. 2.8(a), 2.8(c), 2.8(b) and 2.8(d), the evolution of θh(t), θ̇h(t),
sh(t), and ṡh(t) are respectively shown; while Fig. 2.8(e) and Fig. 2.8(f) depict
the evolution of the total energy of the system H(t) and the control action τ(t)
with respect to time. A comparison of the performance of the controller with
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(f) Evolution of the control action τ(t).

Figure 2.5: Simulation test for the IDA-PBC of the ball and beam system in case
of non constant mass matrix. The initial conditions are (θh(0), θ̇h(0), sh(0), ṡh(0))
= (0.2, 0.01, 0, 0), and the desired configuration is q∗ = (0, 0).
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Figure 2.6: Evolution of the controlled ball and beam system in the phase
plane for different initial conditions (highlighted by stars) (θh(0), θ̇h(0), sh(0),
ṡh(0)): (0.1, 0, 0.1, 0) black line, (−0.1, 0, 0.1, 0) blue line, (0.1, 0,−0.1, 0) red line,
(−0.1, 0,−0.1, 0) green line. The reference is q∗ = (0, 0).

lower gains ka = kv = 10, and higher gains ka = kv = 15, reveals that lower
values of the gains ka and kv provide a better result.

2.5.2 Circular Ball and Beam Application

The circular ball and beam is selected as additional case study, see Fig. 2.9. The
complexity in the stabilization of such a system is due to the presence of two
unstable equilibrium points and to the relevant effect of the gyroscopic forces in
its dynamics. These factors makes the nonlinear control design more complicated
for the ball on circular beam system than the conventional ball on a straight beam
system [99].

In order to deal with the modeling of this specific application, the asymmetric
nonprehensile planar rolling manipulation dynamics (2.23) is employed. In this
system the assumption that the hand can only rotate around its CoM has been
relaxed, i.e. the hand rotates around a point that does not correspond to its
CoM.

The shape of the hand (the circular beam) is parametrized through the chart

chh(sh) = ρh
[
− sin sh

ρh
cos shρh

]T
, (2.86)

with ρh ∈ R+ the radius of the hand. The shape of the ball is parametrized by
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(a) 3D view of Vd.

(b) 2D view of Vd in the plane (θh, sh).

Figure 2.7: Surface of the desired potential function Vd with a minimum in
the desired equilibrium configuration. The red line represents the 3D evo-
lution of Vd(t) with respect to θh(t) and sh(t), considering as initial condi-
tions (θh(0), θ̇h(0), sh(0), ṡh(0)) = (−0.1, 0,−0.1, 0), and the desired configuration
q∗ = (0, 0).
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(f) Evolution of the control action τ(t).

Figure 2.8: Simulation test for the IDA-PBC of the ball and beam system in case
of non constant mass matrix. The initial conditions are (θh(0), θ̇h(0), sh(0), ṡh(0))
= (0, 0.1, 0, 0.05), and the desired configuration is q∗ = (0, 0.08). Two tests
with lower gains (k, ka, kv, kf ) = (4, 10, 10, 1) (solid blue lines), and higher gains
(k, ka, kv, kf ) = (4, 15, 15, 1) (dashed red lines) are presented.
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Table 2.3: Elements of the dynamic model for the circular ball and beam example.

b11 cb1 + cb2 cos( sh
ρh

)

b12, b21 cb3 + cb4 cos( sh
ρh

)

b22 Ioκ
2
r +moρ

2
oκ

2
r

g1 −mog(ρh + ρo) sin
(
θh + sh

ρh

)
− (mh +mo)gλsθh

g2 −mogκrρo sin
(
θh + sh

ρh

)

the chart
coo(sh) = −ρo

[
sin sh

ρo
cos shρo

]T
, (2.87)

with ρo ∈ R+ the radius of the ball. The position of the CoM of the hand in

Σw is given by ph(θh) = λ
[
−sθh cθh

]T
, with λ ∈ R+. Considering (2.2), the

relative curvature is given by

κr =
ρh + ρo
ρhρo

. (2.88)

The upper disk angular velocity is given by θ̇o = θ̇h + κr ṡh. The vectors γ(q)
and η(q) are computed like in (2.19):

γ(q) = −(ρh + ρo)
[
cos
(
θh + sh

ρh

)
sin
(
θh + sh

ρh

)]T
− λ

[
cθh sθh

]T
, (2.89)

and

η(q) = −ρoκr
[
cos
(
θh + sh

ρh

)
sin
(
θh + sh

ρh

)]T
. (2.90)

Therefore, the elements of the dynamics (2.23) are detailed in Table 2.3 for the
circular ball and beam, where cb1 = Ih + Io + λ2(mh + mo) + mo(ρh + ρo)

2,

cb2 = 2λmo(ρh + ρo), cb3 = Ioκr + mo
(ρh+ρo)

2

ρh
, and cb4 = moλρoκr. The mass

matrix has now the following structure

M(sh) =

[
b11(sh) b12(sh)
b12(sh) b22

]
. (2.91)

Notice that b22, cb1, cb2, cb3, cb4 are constant values, while the Coriolis elements
c11, c12, c21, c22, which are not constant, are derived through (2.13). The potential
energy of the circular ball and beam is given by

V (q) = g(mo(ρh + ρo) cos

(
θh +

sh
ρh

)
+ (mo +mh)λ cos(θh)). (2.92)

33



Figure 2.9: A representation of the circular ball and beam system, where the
center of rotation of the hand (indicated by the × symbol) does not correspond
to its geometric center. In red the world fixed frame Σw. In green the hand frame
Σh, while in blue the object frame Σo, placed at the respective centers of mass.

Following the proposed methodology, the expression of α(q) and β(q) have
to be found again such that the PDE (2.64) is solvable, Vd(q) has a minimum in
the equilibrium, and the additional constraint (2.69) is verified. Therefore, it is

proposed α(q) = sinc
(
θh + sh

ρh

)
and β(q) = ksinc

(
θh + sh

ρh

)
, where k ∈ R is a

constant gain to tune. Employing these functions in (2.64), the target potential
energy matching equation becomes

−cv sin

(
θh +

sh
ρh

)
+sinc

(
θh +

sh
ρh

)
∇θhVd(q)+ksinc

(
θh +

sh
ρh

)
∇shVd(q) = 0,

(2.93)
where cv = mog

ρh+ρo
ρh

is a positive parameter. The solution of the PDE (2.93)
provided by Mathematica is

Vd(q)→ cvθ
2
h(ρh − k) + 2cvθhsh

2ρh
+ f(sh − kθh), (2.94)

where f(·) is a generic function of its argument. Therefore, the following desired
potential function is proposed

Vd(q) =
cvθ

2
h(ρh − k) + 2cvθhsh

2ρh
+ kf (sh − kθh)2, (2.95)
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where kf ∈ R is a constant parameter. Then, the Jacobian of (2.95)

∇Vd(q) =

[
cv(−kθh+θhρh+sh)

ρh
+ 2kkf (kθh − sh)

cvθh
ρh
− 2kkfθh + 2kfsh

]
(2.96)

is zero at the desired equilibrium, q∗ = (0, 0), and the Hessian of (2.95)

∇2Vd(q) =

[
cv + 2k2kf − cvk

ρh
−2kkf + cv

ρh
−2kkf + cv

ρh
2kf

]
(2.97)

is positive definite at the desired equilibrium, if k > −ρh and kf >
cv

2ρh(k+ρh)
. In

this way, the desired potential energy has a minimum in the equilibrium.
In order to compute the entries of the desired mass matrix a12(q) and a22(q)

the proposed functions α(q) and β(q) are substituted in (2.66)

a12(q) = −
sinc

(
θh + sh

ρh

)
(b11(sh) + kb12(sh))

∆
, (2.98)

a22(q) = −
sinc

(
θh + sh

ρh

)
(b12(sh) + kb22)

∆
,

The resulting desired mass matrix is

Md(q) =

 ∆a11(q) −sinc
(
θh + sh

ρh

)
(b11(sh) + kb12(sh))

−sinc
(
θh + sh

ρh

)
(b11(sh) + kb12(sh)) −sinc

(
θh + sh

ρh

)
(b12(sh) + kb22)

 ,
(2.99)

which is structurally symmetric, and a11(q) is selected to obtain positive defi-
niteness. As a matter of fact, according to (2.68),

a11(q) = −
kasinc

(
θh + sh

ρh

)
(b11(q) + kb12(q))2

∆(b12(q) + kb22)
> 0, (2.100)

assuming that −ρh < k < − (cb3+cb4)
b22

. Moreover,

a11(q) > −
sinc

(
θh + sh

ρh

)
(b11(q) + kb12(q))2

∆(b12(q) + kb22)
, (2.101)

if the following condition holds: ka > 1. Consequently, the condition (2.69) on
α(q) and β(q) is satisfied, and the desired mass matrix is always positive definite.

It is remarkable that 0 < sinc
(
θh + sh

ρh

)
< 1 if −π <

(
θh + sh

ρh

)
< π, there-

fore, within the domain of interest of θh and sh, the sinc(·) function is positive.
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Notice that for this application ρh >
(cb3+cb4)

b22
and therefore the condition on k

is well-posed.

This choice of Md(q) and Vd(q) allows to satisfy the potential energy match-
ing equation. Even in this case study, the kinetic energy matching equation
(2.32) is fulfilled employing (2.74). The IDA-PBC control law is computed from
the standard equation (2.36).

Circular Ball and Beam Simulations

Some simulation tests are implemented in the Matlab/Simulink environment to
validate the IDA-PBC approach with non constant mass matrix for the ball and
beam case study. The parameters employed for simulations are mo = 0.0216 g, ρo
= 0.075 m, Io = 0.0001215 m2g for the upper disk, ρh = 0.15 m, mh = 0.2356 g,
Ih = 0.0053 m2g for the lower disk, and g = 9.81 m/s2, λ = 0.05 m.

Fig. 2.10 shows the results obtained in the first case study, where the initial
conditions are θh(0) = 0.1 rad, θ̇h(0) = 0 rad/s, sh(0) = -0.05 m, ṡh(0) = 0 m/s.
The equilibrium state is q∗ = (0, 0). The gains k = −0.13, ka = 10, kv = 10 and
kf = 60 are chosen for the control law. In particular, in Fig. 2.10(a), 2.10(c),

2.10(b) and 2.10(d), the timeseries θh(t), θ̇h(t), sh(t), and ṡh(t) are respectively
shown; while Fig. 2.10(e) and Fig. 2.10(f) depict the evolution of the total energy
given by the Hamiltonian function H(t) and the control torque τ(t) with respect
to time. The pictures confirm that the control action is able to drive the state to
the desired configuration, with a smooth control torque.

Fig. 2.11 depicts the surface of the desired potential function Vd, confirm-
ing that it has a minimum in the equilibrium. Assuming as initial conditions
(θh(0), θ̇h(0), sh(0), ṡh(0)) = (0.1, 0,−0.05, 0), and the desired configuration q∗ =
(0, 0), the red line represents the 3D evolution of Vd(t) with respect to θh(t) and
sh(t). Fig. 2.11(c) corresponds to the numerical values in Fig. 2.11(b) where the
surface Vd and the corresponding time evolution are rotated 0.144 rad around

the vertical direction, e3 =
[
0, 0, 1

]T
, and enlarged for better visualization.

Another test is performed considering the desired configuration q∗ = (0, 0),
and the initial conditions (θh(0), θ̇h(0), sh(0), ṡh(0)) = (−0.4, 0.1, 0.02, 0.1), see
Fig. 2.12. In particular, in Fig. 2.12(a), 2.12(c), 2.12(b) and 2.12(d), the evolution
of θh(t), θ̇h(t), sh(t), and ṡh(t) are respectively shown; while Fig. 2.12(e) and
Fig. 2.12(f) depict the evolution of the total energy of the system H(t) and the
control action τ(t) with respect to time. A comparison of the performance of the
controller with lower gains ka = 10, kv = 10, kf = 60, and higher gains ka = 15,
kv = 30, kf = 70, reveals that higher values of ka, kv, kf provide a better result.

Unfortunately, experiments are not yet available. The hardware set-up and
the code for testing, in particular the control approach designed for the circular
ball and beam application, is currently under development.
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(f) Evolution of the control action τ(t).

Figure 2.10: Simulation test for the IDA-PBC of the circular ball and beam
system. The initial conditions are (θh(0), θ̇h(0), sh(0), ṡh(0)) = (0.1, 0, −0.05, 0),
and the desired configuration is q∗ = (0, 0).
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(a) 3D view of Vd. (b) 2D view of Vd in the plane (θh, sh).

(c) 2D view of Vd with respect to the ro-
tated variables (θrh, s

r
h) for better visualiza-

tion.

Figure 2.11: Surface of the desired potential function Vd with a minimum in
the desired equilibrium configuration. The red line represents the 3D evo-
lution of Vd(t) with respect to θh(t) and sh(t), considering as initial condi-
tions (θh(0), θ̇h(0), sh(0), ṡh(0)) = (0.1, 0,−0.05, 0), and the desired configuration
q∗ = (0, 0).
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(f) Evolution of the control action τ(t).

Figure 2.12: Simulation test for the IDA-PBC of the circular ball and beam sys-
tem. The initial conditions are (θh(0), θ̇h(0), sh(0), ṡh(0)) = (−0.4, 0.1, 0.02,
0.1), and the desired configuration is q∗ = (0, 0). Two tests with lower
gains (k, ka, kv, kf ) = (−0.13, 10, 10, 60) (dashed red lines), and higher gains
(k, ka, kv, kf ) = (−0.13, 15, 30, 70) (solid blue lines) are presented.
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2.6 Conclusion

In this Chapter, a general model for nonprehensile dynamic rolling manipula-
tion tasks in 2D is presented. This class of mechanical systems is specified for
symmetric or asymmetric planar rolling systems, i.e., assuming respectively that
the center of rotation is equivalent or not to the geometric center. Successively,
through the Legendre transformation, the Lagrangian dynamics for nonprehen-
sile rolling manipulation is transformed into the Hamiltonian canonical equations
of motion. Thereafter, the Port-Hamiltonian framework for passivity-based con-
trol of mechanical systems is introduced. An IDA-PBC approach is proposed
for the class of separable - with constant mass matrix - planar rolling systems.
A general analytic expression of the desired potential energy is derived for such
class of systems. This function is a solution of the partial differential equations
resulting from the matching equation. The balancing of the disk on disk system
is considered as application for the proposed control approach. Subsequently,
removing the assumption of constant mass matrix, a method to solve the match-
ing equations for non-separable planar rolling systems is proposed with the aim
to reduce the design complexity, while preserving the effectiveness of the IDA-
PBC method. In particular the straight ball and beam, and the circular ball
and beam, are considered as examples of non-separable systems. The proposed
approach employs a target potential energy matching equation, depending on a
parametrization of the desired closed-loop mass matrix, to simultaneously sim-
plify the recognition of the desired mass matrix and select the desired energy
function for the closed-loop system. This is a systematic approach that simplifies
the IDA-PBC design, transforming the set of PDEs resulting from the matching
conditions in a set of algebraic equations.

Drawing a conclusion, the results within this Chapter extend previous results
in the state of the art in both modeling and control. The dynamic model for
nonprehensile planar rolling manipulation described in [64] for symmetric planar
rolling has been extended, removing the assumption that the center of rotation
of the hand corresponds to its geometric center (asymmetric planar rolling ma-
nipulation). In [64], a partial feedback linearization is applied to the disk on disk
and to the ball and beam systems, considering an approximated model (with
constant mass matrix) for control design. The IDA-PBC methodology here pre-
sented allows to include in the control law the gravitational and the Coriolis
effects, avoiding in this way the use of approximate models for control design.
This approach differs from the feedback linearization where a linear dynamics
is imposed at the expense of canceling the nonlinear dynamics of the system.
Moreover, extending the result proposed in [32], a passivity-based control is de-
signed for a whole class of nonprehensile planar rolling systems. Numerical tests
confirm the validity of the control approach, in different case studies, for each of
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the above mentioned planar rolling benchmark systems.
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Chapter 3

Optimal Motion Planning of
Impact Manipulation

3.1 Introduction

Besides rolling manipulation, other kinds of dynamic nonprehensile manipulation,
involving impacts between manipulator and manipulated object, are inspected in
this Thesis. Such tasks are very challenging to control because of their fast and
scarcely predictable dynamics. In the batting task, for example, an object (a
ball) is intercepted by the end-effector (a paddle), without grasping it, and it
is thrown towards a precise goal. This motion primitive is typically used by
athletes, such as baseball batters or table tennis players. Also jugglers use this
primitive when their hands control the continuous motion of one or more objects
through intermittent contacts. Such dynamic motions require high velocity and
precision. The design of planning and control methods to deal with them would
strongly enhance capabilities of robot manipulators, extending the workspace size
and dimensionality, and the repertoire of available actions [70].

The robotic table tennis is one of the applications considered in this Chapter.
One of the first real-time table tennis robot prototype is proposed by Andersson
in [5]. It is built on a commercial PUMA 260 robot arm, which is a 5 degrees
of freedom (DoF) industrial robot. In [6], the same author employs fifth-order
polynomials to generate a trajectory for the paddle intercepting the ball. The tra-
jectory of the arm of the robot is adjusted while the ball is in free flight through a
sensor-driven approach. A low-cost ping-pong player prototype is proposed in [2].
The authors propose to detect the location of the ball combining the information
about the ball and its shadow on the table. An expert module defines the desired
return point for the ball. A high-speed trajectory planner is presented in [103],
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where the authors propose to split the motion in two phases: a high speed phase
and a reactive one, named swing and hitting motion, respectively. The hitting
point is estimated before the impact, while the batting task is accomplished by
modifying this point through a visual feedback. An approach to keep stability of
a biped humanoid robot while playing table tennis is presented in [112]. In that
work, an optimal momentum compensation method using lower body joints to
cancel the momentum generated by arms is discussed. Additionally, the authors
of [65] propose an algorithm for returning a table tennis ball to a desired position
with a desired spin. An approximated hybrid aerodynamics of the ball is ex-
ploited to compute the configuration of the paddle at impact time to accomplish
the batting task.

In the field of artificial intelligence, learning techniques exploiting data-driven
perspectives instead of inverse kinematics and physical models are often applied
to the robotic table tennis game, through offline training of the system. The work
presented in [121] shows instead some experiments on two humanoid robots play-
ing ping-pong. The approach employs an adjustment of the trajectory prediction
from an offline training of the model parameters based on a neural network. The
work in [51] presents an approach for robotic table tennis game consisting in two
stages: a first regression phase, in which the joint trajectories are generated to
strike the incoming ball, and a second reinforcement learning phase, where the
joint trajectories are updated to properly return the ball. Moreover, in [41] a
probabilistic approach to intercept a table tennis ball in space is presented. A
probabilistic representation is employed to find the initial time and the duration
of the movement primitive maximizing the likelihood of hitting the ball. Mod-
eling and learning of complex motor tasks is applied to the robotic table tennis
also in [76].

Furthermore, planning and control of rhythmic tasks has been a very active
research area over the last years. In [21, 22] the authors investigated the stabi-
lization of juggling tasks. In their work they considered the trajectory control of
a puck; as control input they used a bar which is actuated around a revolute joint.
They proposed and experimentally verified the well known mirror algorithm to
control the system. Several works have investigated robotic juggling with em-
phasis on the aspect of learning control [1, 100, 101, 102]. Following the work of
Buehler, Brogliato and Lynch proposed stabilizing feedback laws for the planar
juggler. In [20] the juggling robot is considered as a complementary-slackness
hybrid mechanical system, where the force input mainly consists of a family of
dead-beat feedback control laws, introduced via a recursive procedure. The work
[67] shows how to control a one joint revolute arm to bat juggle a planar disk in
a gravity field to a desired juggling limit cycle. It is required an open connected
subset of the state space such that, for every state in the subset, there exists a
feedback control which keeps the system in a closed orbit (forced recurrence).
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The controller is based on real-time nonlinear optimization using a model of the
discrete dynamics and the recurrent control as an initial seed. In the two works
[91, 92] feedback control strategies are investigated to continuously bounce a ball
in the air, and discuss the influence of the impact acceleration on the robustness
of the system to parameter uncertainties.

Trajectory tracking control for a one DoF juggling system is deeply studied by
[98], also with multiple balls. The mechanical systems with impacts is modeled
as hybrid dynamical systems, given by a set of differential equation/inclusion
and difference equation/inclusion, on specific subsets of the state space. Juggling
experiments are presented in [116] to validate a hybrid control algorithm, that
is capable of tracking a periodic reference trajectory. In [88, 89] the authors
propose a bouncing ball robot named blind juggler. They took the impact time
measurements as feedback and proved that the closed-loop performance is only
marginally improved as compared to open-loop control. The paper [9] inspects
the flower-stick juggling task with an analytical technique. The stability of the
approach is analyzed exploiting the concept of virtual connecting manipulation,
using the Poincarè maps.

Interestingly, [114] tackles the concept of tossing and catching manipulation
to pass an object between a couple of one DoF manipulators. The authors provide
a kinematic model for the task and an iterative learning control approach. The
paper [4] proposes a planner to reconfigure planar polygonal objects by juggling
between the palm of two hand-like manipulators. The authors analyze the prob-
lem of dynamic grasp when the palm holds the object and minimize the relative
velocity between object and hand.

In this Chapter, a minimum acceleration planner in SE(3), based on the theory
of differential geometry, is used to generate an optimal path for the manipulator,
according to what is proposed in [120]. By choosing the acceleration norm as
measure of smoothness, the trajectories can be made to satisfy boundary con-
ditions on the velocities. In order to ensure that the computed trajectories are
independent of the parameterization of positions and orientations, the notions
of Riemannian metric and covariant derivative are borrowed from differential ge-
ometry and the problem is formulated as a variational problem on the Lie group
of spatial rigid body displacements. This optimal planner is employed in the
algorithms designed for two impact manipulation tasks, i.e. the batting [108],
and the juggling [106] tasks. The hybrid dynamics of these tasks are taken into
account in the respective planning algorithms, together with nonlinear estimation
methods that allow to properly intercept the ball in time. The hybrid dynamic
models here considered are based on the works [65, 79, 80], where the original ap-
plication is the table tennis game. The nonlinear estimation techniques for these
nonprehensile tasks are instead inspired by [63], which is motivated by a prehen-
sile manipulation (the ball catching task with robot endowed with an eye in-hand
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monocular visual system integrated into a gripper). The algorithms presented in
this Chapter are implemented with numerical simulations in the Matlab/Simulink
environment, along with some comparisons with other state-of-the-art planning
algorithms.

3.2 Generation of the Optimal Path

The first problem that is addressed in this Chapter is the generation of an opti-
mal trajectory in SE(3) for the robot end-effector to hit the ball at the impact
time. By knowing the initial configuration of the end-effector, and after having
computed its desired configuration at the impact time (as detailed in the follow-
ing Sections), many different paths and trajectories can be followed to fulfill the
requirements. A wiser method would be to find this path such that a certain
objective function is optimized. The acceleration functional of the end-effector
along the path in SE(3) is chosen as objective function. In this way, the resulting
trajectories require smooth velocities and accelerations at the end-effectors of the
robot. Notice that the planned trajectories in SE(3) are independent from the
chosen representation for the orientation of the robot end-effector. Changing the
representation for the orientation do not imply a change in the planner, but only
a different mapping from SE(3).

In the following, a brief background about differential geometry is provided.
Afterwards, the theory about the minimum acceleration planner for the end-
effector is reported.

3.2.1 Brief Background about Differential Geometry

Within this context, trajectories for which it is possible to specify both the initial
and final position and velocity are of interest. The motion can be specified in
either the joint space, which is a torus, or the task space, which is SE(3). At
this stage, to be general, it is assumed that the path is generated on an arbitrary
Riemannian manifold M (see [31] for more details).

Let γ : (a, b) −→ M be the path, and ⟪·, ·⟫ be the metric on M. Let f :
(−ε, ε)× (a, b) −→M be a proper variation of γ satisfying

f(0, t) = γ(t), ∀t ∈ (a, b)

f(s, a) = γ(a), and f(s, b) = γ(b).

Two vector fields are relevant along the path γ. The former is the variation field
which is defined by

Sγ(s) :=
∂f(s, t)

∂s
=

dft(s)

ds
.
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The latter is the velocity vector field of γ, given by

Vγ(s) :=
dγ(t)

dt
=
∂f(s, t)

∂t
=

dfs(t)

dt
.

Hence, the Levi-Civita connection ∇ is introduced to perform calculus on the
curves of M. Therefore, given a curve γ(t) and a connection, there exists a
covariant derivative denoted by D

dt .
The Levi-Civita connection satisfies the following compatibility and symmetry

conditions:

(3.1a)
d

dt
⟪U,W⟫ = ⟪DU

dt
,W⟫+ ⟪U, DW

dt
⟫

(3.1b)∇XY −∇YX = [X,Y ]

for any vector fields U and W , along the differentiable curve γ, and any vector
field X,Y ∈ X(M), where X(M) is the set of all vector fields on M.

The curvature R of a Riemannian manifoldM associates to every pair X,Y ∈
X(M) a mapping R(X,Y ) : X(M) −→ X(M) given by

R(X,Y )Z = ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z,

where Z ∈ X(M). In the next subsection, the following properties related to the
curvature are employed

D

∂t

D

∂s
X − D

∂s

D

∂t
X = R

(
∂f

∂s
,
∂f

∂t

)
X,

〈R(X,Y )Z, T 〉 = 〈R(Z, Y )X,Y 〉.

3.2.2 Minimum Acceleration Path in SE(3)

Following the theory developed in [120], the following acceleration function along
the path of the robot end-effector in SE(3) is minimized within the proposed
framework

(3.2)J =

∫ tb

ta

〈∇V V ,∇V V 〉dt,

where [ta, tb] is the time interval over which the trajectory is planned, V =
(ωP ,vP ) ∈ se(3) is the velocity of the end-effector along a particular path, and
∇ denotes the Levi-Civita affine connection derived from a particular choice of
metric on SE(3). This latter object allows the differentiation along curves on
any smooth manifold. In particular, the inner product of the acceleration of a
particular path with itself is expressed in (3.2): this may also be identified by the
squared norm of the acceleration of this path at a particular point. Choosing the
metric on SE(3) as

W =

[
αI3×3 0

0 βI3×3

]
,
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where α, β > 0 so that for T 1,T 2 ∈ se(3) then ⟪T 1,T 2⟫ = tT1Wt2 with t1 and t2
the 6× 1 components of T 1 and T 2, the Levi-Civita connection can be expressed
by

∇XY =

{
d

dt
ωy +

1

2
ωx × ωy,

dvy
dt

+ ωx × vy
}
,

where ωx and ωy are the angular components and vx and vy are the linear com-
ponents of the rigid body velocities X ∈ se(3) and Y ∈ se(3), respectively.

In order to have necessary conditions to find a path minimizing the acceler-
ation function, the first variation of such a cost (3.2) has to be equated to zero.
This yields a fourth order boundary problem given by

(3.3)∇V∇V∇V V +R (V ,∇V V )V = 0,

where R is the curvature tensor associated with the Levi-Civita affine connec-
tion [31]. Notice that it is possible to write down (3.3) in terms of the angular
and linear velocity components of the end-effector as

(3.4a)ω
(3)
P + ωP × ω̈P = 0,

(3.4b)p
(4)
P = 0,

where (·)(n) denotes the nth derivative of (·). The obtained ordinary differential
equations (3.4) turn into a well-defined boundary value problem with the addition
of the boundary conditions. Regarding the rotational path (3.4a), such boundary
conditions are

(3.5a)RP (ta) = R0
P ωP (ta) = ω0

P ,

(3.5b)RP (tb) = Ri
P , ωP (tb) = ωiP ,

where R0
P and ω0

P are the initial orientation and angular velocity of the end-
effector, respectively. On the other hand, regarding the translational path (3.4b),
the boundary conditions are

(3.6a)pP (ta) = p0P vP (ta) = v0P ,

(3.6b)pP (tb) = piP vP (tb) = viP ,

Notice that in the practice, the optimal translational motion of the end-
effector is found by merely solving a small scale linear system of equations ob-
tained by (3.4b) and (3.6): this may be performed very fast from an elaboration
time point of view. Nevertheless, in order to determine the rotary motion of the
end-effector, a boundary value problem needs to be solved. In general, a bound-
ary value problem is nonlinear and time invariant, but the forcing function (3.4a)
is hardly complicated.
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Figure 3.1: Two semi-humanoids playing table tennis in the V-REP simulation
platform.

3.3 Optimal Planner for the Batting Task

The goal of the work presented in this Section is to implement the batting prim-
itive on a semi-humanoid. The robot end-effector is equipped with a paddle to
intercept a flying ball, as in [107, 108]. A picture of two semi-humanoids exploit-
ing the batting primitive to play table tennis, in the V-REP graphic simulation
platform, is shown in Fig. 3.1.

3.3.1 Hybrid Dynamic Modeling

The hybrid dynamics of the ball consists of the free flight aerodynamics and
the impact reset map. The former is modeled through Newton’s equations of
motion, while the latter is a reset of the state, updated according to the impact
detection. In order to analytically model the ball dynamics, the work [65] is
considered. That work is supported by simulations and experiments in several
case studies and follows up a deep study on the hybrid dynamic modeling of the
table tennis game, [80]. On the other hand, a first-order dynamics for the paddle
is here introduced, assuming that it is possible to directly control its velocity.
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In the derivation of the hybrid dynamic model of this system, the following
assumptions are made:

• as long as the paddle is made of rubber, the rebound in the direction normal
to the paddle’s plane does not affect the motion of the ball in the other
directions;

• point contact occurs between the ball and the paddle during the impact;

• since the mass of the paddle is usually bigger than the mass of the ball,
only the velocity of the ball is considered to be affected by the impact.

According to Fig. 3.2, let ΣW be the fixed world frame, ΣP be the frame placed
at the center of the paddle, where the z-axis is the outward normal, and ΣB be

the frame placed at the center of the ball. Let pB =
[
pBx pBy pBz

]T ∈ R3

be the position of the ball, vB =
[
vBx vBy vBz

]T ∈ R3 be the velocity of the

ball, ωB =
[
ωBx ωBy ωBz

]T ∈ R3 be the spin of the ball, assumed constant

during the free flight, pP =
[
pPx pPy pPz

]T ∈ R3 be the position of the

paddle, vP =
[
vPx vPy vPz

]T ∈ R3 be the velocity of the paddle, ωP =[
ωPx ωPy ωPz

]T ∈ R3 be the angular velocity of the paddle, all expressed in
ΣW . Finally, let RP ∈ SO(3) be the rotation matrix of ΣP with respect to ΣW .

The continuous ball and paddle dynamics are given by

ṗB = vB , (3.7a)

v̇B = −g − kd||vB ||vB + klS(ωB)vB , (3.7b)

ṗP = vP , (3.7c)

ṘP = RPS(ωP ), (3.7d)

where g =
[
0 0 g

]T
is the gravity acceleration, ||·|| is the Euclidean norm,

S(·) ∈ R3×3 is the skew-symmetric matrix operator. kd and kl are drag and lift
parameters, respectively, and they are typically modelled as

kd = kd(vB ,ωB) =
ρπr2(ad + bdν(vB ,ωB))

2m
, (3.8a)

kl = kl(vB ,ωB) =
ρ4πr3(al + blν(vB ,ωB))

m
, (3.8b)

with

ν(vB ,ωB) =
1√

1 +
(v2Bx+v

2
Bx)ω

2
Bz

(vBxωBy−vByωBx)2

. (3.9)
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Figure 3.2: Ball and paddle coordinate systems.

The meaning of other parameters, like ρ, r, ad, al, bd, bl, and their numerical
values employed in simulations are depicted in Section 4.4, Table 3.2, where a
standard table tennis ball and a rubber paddle have been considered. Since the
paddle can modify the ball velocity only at the impact time, the control action,
represented by the paddle linear and angular velocities, enters the ball dynamics
through the reset map. Assuming that the superscripts − and + represent the
state before and after the impact time, respectively, the rebound equations are
given by [65]

v+B = vP +RPAvvR
T
P (v−B − vP ) +RPAvωR

T
Pω
−
B , (3.10a)

ω+
B = RPAωvR

T
P (v−B − vP ) +RPAωωR

T
Pω
−
B , (3.10b)

where the matrices of rebound coefficients are defined as

Avv = diag(1− ev, 1− ev, er),Avω = −evrS(e3), (3.11)

Aωv = eωrS(e3),Aωω = diag(1− eωr2, 1− eωr2, 1),

where ei ∈ R3 is the unit vector along the ith-axis, i = {1, 2, 3}, while ev and ew
are described in the Table 3.2.

Notice that (3.7b) takes into account the spin of the ball: the magnitude of the
drag and lift forces and their coefficients change according to the spin, influencing
the trajectory of the ball. The values of the components of ωB determine the
kind of the spin, namely:

• backspin, if ωBy > 0;

• topspin, if ωBy < 0;

• sidespin, if ωBz > 0.

The effect of the spin of the ball in a table tennis game is not negligible and makes
a difference between a serious table tennis player and a novice one. Serious players
use spin on both their serves and rallying shots to control the ball and to force
errors from their opponents.
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Figure 3.3: Graphic representation of the stages of the batting algorithm.

3.3.2 Time-Optimal Prediction

Workflow of the Algorithm

In order to generate the optimal motion for the paddle to bat a table tennis ball
towards a desired position with a desired spin, the paddle has to intercept the
ball with a specific orientation and velocity. The algorithm to realize such batting
motion primitive can be roughly divided in three main phases: the prediction of
the motion of the ball, the selection of the configuration of the paddle at impact
time, and the trajectory planning for the paddle. A graphical representation of
the phases generating the optimal path for the paddle is showed in Fig. 3.3.

1. In the first stage, the impact time ti, the position at impact time piB =[
piBx piBy piBz

]T ∈ R3, and the pre-impact velocity v−B of the ball are
predicted assuming to know the position of the ball at initial time p0B =[
p0Bx p0By p0Bz

]T ∈ R3 and its linear and angular velocity, respectively,

v0B =
[
v0Bx v0By v0Bz

]T ∈ R3 and ω0
B =

[
ω0
Bx ω0

By ω0
Bz

]T ∈ R3.
These are produced by the opponent’s hit and obtained from the visual
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measurement system. This step is accomplished by solving forward the
model (3.7a)-(3.7b). Afterwards, choosing the goal configuration of the

ball given by pdB =
[
pdBx pdBy pdBz

]T ∈ R3, ω+d
B ∈ R3, and the desired

final time td, the post-impact velocity of the ball v+B ∈ R3 is obtained
through the backward solution of (3.7a)-(3.7b).

2. In the second stage, once the spin and velocity of the ball before and after
the impact are computed from the previous stage, the algorithm selects the
orientation Ri

P and the velocity viP of the paddle at impact time through
the solution of the reset map (3.10).

3. In the third stage, the optimal trajectory planner for the paddle, based
on the derivation presented in Section 3.2, receives as input the desired
configuration of the paddle at impact time. A boundary value problem is
solved to compute the linear and angular trajectories of the paddle without
specifying any representation of the angular coordinates. At this point, the
linear and angular path of the paddle, namely pP (t),vP (t),RP (t),ωP (t),
can be tracked by the end-effector of the semi-humanoid robot with a clas-
sical second order closed loop kinematic inversion [110].

Notice that the approaches presented in [65, 79], which have inspired the first
and the second stages of this algorithm, assume instead that the impact position
and pre-impact velocity of the ball are a priori known. Such assumptions are
quite restrictive: hence, here the determination of such ball impact configuration
is addressed at run-time. In addition, it is remarkable that one of the differences
between the approaches presented by the works [107] and [108] is related to the
first stage. In fact, the impact time is not a priori defined in [107], as instead in
[108], but it is online predicted. In the following, the accurate description of the
first two stages will be carried out. As stated above, the third stage is detailed
in Section 3.2.

Stage 1: Prediction of the Impacting Time, Position and Velocities of
the Ball

In order to predict the impact time, the position of the ball, and its linear pre- and
post-impact velocities such that it reaches the desired location after the batting
action, the equations (3.7a) and (3.7b) of the aerodynamic model are employed.
However, this model is nonlinear and coupled, thus an analytic solution does not
exist, and this complicates the estimation of the state at a certain time. Other
approaches, such as in [2] and in [77], employ linearized or simplified models with
the aim to cut down the elaboration time. For example, the following simplified
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model of (3.7a)-(3.7b) is employed in [65]

v̇Bx = −ζd|vBx|vBx, ṗBx = vBx, (3.12a)

v̇By = −ζd|vBy|vBy, ṗBy = vBy, (3.12b)

v̇Bz = −g, ṗBz = vBz, (3.12c)

where ζd = ρ
2mπr

2kd, with kd considered as a suitable constant coefficient. Even
though it is nonlinear, its analytic solution can be easily computed. The approach
here proposed goes, instead, in a different direction for online state estimation:
it exploits a proper numerical solver suitable for real-time processing.

Three different optimization problems are considered to predict the impact
time and position of the ball, as well as its velocity before the rebound. The
general methodology consists in the solution of nonlinear curve fitting problems.
Afterwards, the second step of this stage consists in another optimization problem
designed to compute the post-impact velocity of the ball.

Prediction with a Predefined Impact Time A first approach to predict
the impact position and the pre-impact velocity of the ball is showed in [108].
By assigning the impact time, the impact configuration of the ball is predicted
according to its initial position and velocity produced by the opponent’s hit. The
following minimization problem is then considered

min
pi

B ,v
−
B

∣∣∣∣∣
∣∣∣∣∣
[
p̃0B
ṽ0B

]
−
[
p0B
v0B

] ∣∣∣∣∣
∣∣∣∣∣
2

, (3.13)

where piB and v−B are the optimizing variables, p̃0B = p̃0B(piB ,v
−
B) and ṽ0B =

ṽ0B(piB ,v
−
B) are the position and the velocity of the ball at the initial time, respec-

tively, numerically obtained by backward integrating (3.7a) and (3.7b) starting
from the optimization variables piB ,v

−
B at the predefined impact time ti.

Prediction of a Variable Impact Time In a second possible optimization
problem, the impact time is predicted as well as the impact position and the
pre-impact velocity of the ball. Starting from the initial state of the ball, the
following minimization problem is equivalent to (3.13) but it includes the impact
time as a decision variable

min
ti,pi

B ,v
−
B

∣∣∣∣∣
∣∣∣∣∣
[
p̃0B
ṽ0B

]
−
[
p0B
v0B

] ∣∣∣∣∣
∣∣∣∣∣
2

. (3.14)

In this case, the resulting impact time is optimized in the sense that it best fits
the numerical curve.
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Prediction of a Variable Impact Time Minimizing the Paddle Motion
A third approach, consists in the computation of the impact time, as well as
the impact position and the pre-impact velocity of the ball, by minimizing the
distance between the initial position of the paddle and its impact position. The
following minimization problem is thus considered

min
ti,pi

B ,v
−
B

||p̃iB − p0P ||2, (3.15)

where p̃iB = p̃iB(p0B ,v
0
B) is the position of the ball at impact time, numerically

obtained by forward integrating (3.7a) and (3.7b) starting from the optimization
variables p0B ,v

0
B at time t0. In this case, the resulting impact time is optimized

in the sense that the paddle travels the shortest distance to intercept the ball.
Therefore, the introduction of this metric in the prediction stage allows not only
to predict the position of the ball and its pre-impact velocity but even, more
interestingly, to optimize the impact time with respect to the length of the path
that the paddle should cover.

Prediction of the Post-impact Velocity of the Ball Moreover, the second
step of this stage consists in another optimization problem to solve to compute
the post-impact velocity of the ball v+B such that it reaches the goal pdB at the
desired time td. The following minimization is solved

min
v+

B

‖p̃dB(v+B)− pdB‖2, (3.16)

where v+B is the decision variable, and p̃dB(v+B) is the position of the ball at time
td, numerically obtained by forward integrating (3.7a) and (3.7b) starting from
the ball position piB at impact time ti, computed through one of the metrics given
above - corresponding to the minimization problems (3.13), (3.14), or (3.15). This
solution ensures that the post-impact motion of the ball is such that it reaches
the desired location at the time td as close as possible. An initial guess for the
solution of the minimization problem (3.16) is analytically calculated from (3.12)
as

v+Bx =
(pdBx − piBx)(eζ

d|pdBx−p
i
Bx| − 1)

ζd|pdBx − piBx|(td − ti)
, (3.17a)

v+By =
(pdBy − piBy)(eζ

d|pdBy−p
i
By| − 1)

ζd|pdBy − piBy|(td − ti)
, (3.17b)

v+Bz = −g(td − ti)
2

+
pdBz − piBz
td − ti

. (3.17c)
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Table 3.1: List of symbols for the hybrid model of impact manipulation.

r Radius of the ball

rp Radius of the paddle

m Mass of the ball

ρ Density of the air at (25◦C)

g Gravity constant

εv Velocity rebound coefficient

εω Spin rebound coefficient

εr Linear rebound coefficient

κd1 Drag coefficient

κd2 Drag coefficient

κl1 Lift coefficient

κl2 Lift coefficient

ζd Simplified drag coefficient

Stage 2: Desired Configuration of the Paddle at Impact

Once the impact time ti, the impact position piB of the ball and its pre- and
post-impact velocities, v−B and v+B respectively, are computed as in Section 3.3.2,
the paddle configuration is derived solving the rebound model of the ball.

Consider the YX-Euler angles (θ, φ) as a parametric representation of the
orientation of the paddle, with φ ∈ [−π/2, π/2] and θ ∈ [0, π], and define ṽ =[
ṽx ṽy ṽz

]T
= v+B − v

−
B and ω̃ =

[
ω̃x ω̃y ω̃z

]T
= ω+d

B − ω
−
B . The velocity

and orientation of the paddle at impact time are respectively computed through

viP = v−B +Ri
P (I3×3 −Avv)

−1(RiT
P ṽ −Avωω

−
B), (3.18a)

Ri
P = RY (θ)RX(φ), (3.18b)

where I3×3 ∈ R3×3 is the identity matrix, Ri(·) ∈ SO(3) is the elementary
rotation matrix with i = {X,Y }, representing the rotation of an angle around
the i-axis, and θ, φ are such that

ṽz cosφ sin θ − ṽx cosφ cos θ = ω̃y, (3.19a)

e2c ||ṽ||2sin2 φ− 2ece2S(ṽ)ω̃ sinφ+ (e1 + e3)||ω̃||2−ece2||ṽ||2 = 0, (3.19b)

where ec = εωr/εv, and the other symbols are listed in Table 3.1. In order to
obtain a well-posed solution of the reset map, the ball motions must comply with
the Proposition 1 in Section III-A of [65].
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Table 3.2: Numerical values of the considered parameters of the hybrid dynamic
model.

r 2e-2 m

rp 1.5e-1 m

m 2.7e-3 kg

ρ 1.184 kg/m3

g 9.81 m/s2

κd1 5.05e-1

κd2 6.5e-2

κl1 9.4e-2

κl2 -2.6e-2

εv 6.15e-1

εω 2.57e3

εr 7.3e-1

ζd 5.4e-1

3.3.3 Batting Task Simulations

This Section presents a discussion about the numerical evaluation of the batting
algorithm. The three metrics introduced in the previous Section in (3.13), (3.14),
and (3.15) are taken into account. In detail, an exemplar simulation of the
proposed technique with a predefined impact time corresponding to (3.13) is
firstly showed. Subsequently, the approach is evaluated with the prediction of a
variable impact time using the last two metrics (3.14)-(3.15). Finally, some tests
focused on the paddle motion are presented to underline the properties of the
planned trajectories.

The values of the parameters of the dynamic model considered to simulate
the physical system (3.7) and (3.10) are listed in Table 3.2. The Matlab en-
vironment is used for numerical tests. For the hybrid dynamics, the ode45
solver, with the events option, is employed. The lsqcurvefit function, which is
based on the Levembert-Marquardt’s algorithm, is adopted to solve the nonlin-
ear curve fittings. The boundary value problem, for the minimum acceleration
planner, is solved through the bvp4c function. In this work, the Levembert-
Marquardt’s algorithm is employed to solve the non-linear least squares prob-
lems (3.13), (3.14), and (3.15) since it guarantees small elaboration time, as
explained in [63] and [26]. In order to speed up the convergence of the optimiza-
tion problems, the initial guess for the solution is obtained solving analytically
the approximated model (3.17).

Evaluation of Problem (3.13): Predefined Impact Time

In this case study the proposed algorithm, depicted in Fig. 3.3, is simulated con-
sidering a constant predefined impact time. Then, supposing to have at disposi-
tion the estimated trajectory of the ball from the visual system and the desired
final configuration of the ball, the optimal paddle trajectory is derived through the
two minimization problems (3.13) and (3.16), and the solution of (3.18) and (3.4).

In particular, the initial state of the ball is assumed to be equal to p0B =
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(a) 3D trajectories of the ball and the paddle (respectively solid
and dashed line) obtained from the predefined impact time method.
The blue circle represents the initial position of the paddle, while
the blue cross identifies the goal position of the ball.

(b) Euclidean norm of the linear (top) and angular (center) velocity
paths planned for the paddle, and evaluation of the acceleration
functional J in (3.2) between the motion plan devised using the
Euler angles and the optimal proposed one (bottom). The red star
represents the impact time ti.

Figure 3.4: Simulation of the batting task with predefined impact time.
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[
1.2, 0.7, 0.9

]
m, v0B =

[
−3, 0.2, 1.5

]
m/s and ω−B =

[
0, 150, 0

]
. The

impact time is fixed to ti = 0.5 s and the goal position of the ball after the rebound
is assigned as pdB =

[
1.9, 0.8, 0.02

]
m. The desired final time corresponds to

td = 0.6 s, and the post-impact spin of the ball to
[
ω+
By,ω

+
Bz

]
=
[
−100, 0

]
rad/s.

The term ω+d
B derives from the expression ṽTBω̃B = 0. Notice that the actual

final time is evaluated when the third component of the position vector of the
ball corresponds to the radius of the ball.

Solving (3.13) yields the values piB =
[
−0.1394, 0.7892, 0.4820

]
m and

v−B =
[
−2.4156, 0.1570, −2.9788

]
m/s, while the solution of the minimiza-

tion (3.16) yields v+B =
[
4.0516, 0.0214, 2.0984

]
m/s. Furthermore, the solu-

tion of the rebound model (3.18) yields

Ri
p =

 0.8614 0.0054 0.5080
0 0.9999 −0.0106

−0.5080 0.0092 0.8613

 ,

and viP =
[
1.4388, 0.0220, −0.1131

]
m/s. Afterwards, the minimum acceler-

ation trajectory for the paddle is planned employing (3.4).

Let ∆ti be the error between the predefined impact time and the one obtained
during the simulation through the ode45 solver together with the events option.
Let ∆piB be the Euclidean norm of the error between the planned and actual
impact position of the ball, ∆td be the error between the predefined and actual
final time td, ∆pdB be the Euclidean norm of the error between the goal position
of the ball and the actual one. The first row of Table 3.3 shows these errors in case
of a predefined impact time. Whereas, the resulting plots are depicted in Fig. 3.4.
In particular, the 3D trajectories of both the ball and the paddle are represented
in Fig. 3.4(a). The solid line represents the motion of the ball, while the trajectory
for the paddle is depicted by a dashed line. The blue cross represents the final
desired position of the ball pdB , while the blue circle is the initial position of the
paddle p0P . A more detailed evaluation of the proposed batting algorithm with
fixed impact time in case of sidespin, backspin, and topspin can be found in [108].

Moreover, a video1 shows this simulation performed in Matlab in connection
with the V-Rep virtual simulation environment. A 21 DoF semi-humanoid robot
is used within this simulation. The 7 DoF right arm is equipped with a parallel
jaw gripper firmly grasping the paddle (see Fig. 3.1). The rebound model of
the ball with the table is given by [80], and a second order closed loop kinematic
inversion is implemented to map the planned Cartesian variables to the joints
space of the robot [110].
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Table 3.3: Comparison of the fixed and optimized impact time prediction meth-
ods.

∆ti ∆piB ∆td ∆pdB
Fixed Impact Time Prediction 4.5e-3 s 1.73e-2 m 1.9e-3 s 9.4e-3 m

Optimal Impact Time Prediction 4e-3 s 1.69e-2 m 1.1e-3 s 1.33e-2 m

Evaluation of Problems (3.14)-(3.15): Optimal Impact Time Prediction

In this case study, the same initial configuration of the ball used in the previous
Section is considered, and the proposed algorithm is evaluated including the
online prediction of the impact time. The results obtained with the two prediction
metrics (3.14)-(3.15) are here reported.

A first test is done considering the minimization problem (3.14). In this case,
the prediction phase provides: ti=0.5051 s, piB =

[
−0.1516, 0.79, 0.4668

]
m,

and v−B =
[
−2.4105, 0.1565, −3.0174

]
m/s. The obtained result is not sub-

stantially different from the one got from the simulation considering a pre-defined
impact time. For this reason, figures for this case are not included.

Whereas, another test is done solving (3.15), (3.16), (3.18), and (3.4). In this
case, the solution of (3.15) is ti = 0.5735 s, piB =

[
−0.3141, 0.8, 0.243

]
m, and

v−B =
[
−2.34, 0.1498, −3.521

]
m/s. The predicted impact time guarantees

that the paddle follows the minimum length path to intercept the ball. The plots
resulting from this test are displayed in Fig. 3.5. The 3D paths of the ball and
the paddle are reported in Fig. 3.5(a). The solid and dashed lines represent the
motion of ball and paddle, respectively. The blue cross identifies the goal position
of the ball, whereas the blue circle is the initial position of the paddle. The second
row of Table 3.3 shows the values of ∆ti, ∆piB , ∆td, and ∆pdB for this numerical
test. Now, ∆ti represents the error between the impact time resulting from the
minimization problem and the one obtained during the simulation. The results
point out that, even if the position error is slightly increased with respect to the
constant impact time prediction case, the impact time and position are planned
online in [107], and the ball hits the table at a time closer to the desired one.

Comparative Case Studies for the Batting Task

The purpose of this subsection is to compare the planning method with a prede-
fined impact time, here proposed, with the state-of-the-art approach introduced
by [65], which presents several case studies, with ample implementation details,

1https://youtu.be/GXtBvbUHu5s
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(a) 3D trajectories of the ball and the paddle (respectively solid and
dashed line) obtained considering the optimal impact time method.
The initial position of the paddle is represented by the blue circle,
while the goal position of the ball is the blue cross.

(b) Euclidean norm of the linear (top) and angular (center) velocity
planned for the paddle, and evaluation of the acceleration functional
J in (3.2) between the motion plan devised using the Euler angles
and the optimal one (bottom). The red star represents the impact
time ti.

Figure 3.5: Simulation of the batting task with optimal impact time.

61



(a) Backsping case study. (b) Topspin case study.

(c) Sidespin case study.

Figure 3.6: 3D trajectories of the ball, solid line, and the paddle, dashed line,
obtained with the proposed method. The blue circle represents the initial position
of the paddle, while the blue cross is the desired final position of the ball.
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(a) Comparison between ball trajectories: the solution given by
analytically solving (3.12) is depicted through a solid line, the pro-
posed one is instead represented with a dashed line. The blue cross
represents the desired final position of the ball.

(b) From the top to the bottom: magnitude of the planned linear
and angular velocity of the paddle, evaluation of the acceleration
functional J in (3.2) between the motion plan devised using the
Euler angles and the optimal proposed one. The red star represents
the impact time ti.

Figure 3.7: Comparative backspin first case study.
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(a) Comparison between ball trajectories: the solution given by
analytically solving (3.12) is depicted through a solid line, the pro-
posed one is instead represented with a dashed line. The blue cross
represents the desired final position of the ball.

(b) From the top to the bottom: magnitude of the planned linear
and angular velocity of the paddle, evaluation of the acceleration
functional J in (3.2) between the motion plan devised using the
Euler angles and the optimal proposed one. The red star represents
the impact time ti.

Figure 3.8: Comparative topspin second case study.
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(a) Comparison between ball trajectories: the solution given by
analytically solving (3.12) is depicted through a solid line, the pro-
posed one is instead represented with a dashed line. The blue cross
represents the desired final position of the ball.

(b) From the top to the bottom: magnitude of the planned linear
and angular velocity of the paddle, evaluation of the acceleration
functional J in (3.2) between the motion plan devised using the
Euler angles and the optimal proposed one. The red star represents
the impact time ti.

Figure 3.9: Comparative sidespin third case study.
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Table 3.4: Ball pre-impact configuration.

v−B [m/s] ω−B [rad/s]

1
[
−2.5, 0, 0.1

] [
0, 150, 0

]
2

[
−4.5, 0, 0.3

] [
0,−150, 0

]
3

[
−2.75,−0.8,−0.5

] [
0,−50, 150

]

Table 3.5: Comparative case study 1 - Numerical results.

∆ti [s] ∆piB [m] ∆td [s] ∆pdB [m] tc[ms]

A 5.2e-3 1.3e-2 1.12e-2 5.47e-2 9e-3

B 5.14e-3 1.29e-2 4.88e-3 6.47e-4 21

Table 3.6: Comparative case study 2 - Numerical results.
∆ti [s] ∆piB [m] ∆td [s] ∆pdB [m] tc[ms]

A 3.86e-3 1.74e-2 4.26e-2 1.3e-1 8e-3

B 4.01e-3 1.81e-2 7.34e-4 3.29e-2 21

Table 3.7: Comparative case study 3 - Numerical results.
∆ti [s] ∆piB [m] ∆td [s] ∆pdB [m] tc[ms]

A 4.88e-3 1.42e-2 2.12e-2 1.03e-1 1e-2

B 4.86e-3 1.41e-2 9.02e-4 1.94e-2 25

allowing a fair and critical comparison. Three case studies are considered, re-
spectively: backspin, topspin and sidespin. In order to obtain a fair compari-
son, to comply with the case studies in [65], the ball pre-impact state and the
impact time are assumed to be known a-priori and then the minimization prob-
lems (3.13)-(3.14)-(3.15) are not solved in this case. As a matter of fact, in each
of these cases, the impact position of both the ball and the paddle is assigned to
be piP = piB =

[
−0.15 0.70 0.25

]
m, while the linear and angular velocity of

the ball before the impact for the backspin, topspin and sidespin case studies are
shown in Table 3.4. On the other hand, the impact time is ti = 0.1 s, the desired
goal position for the ball is pdB =

[
2.055 0.7680 0.02

]
m, while the desired

final time is td = 0.6 s. Moreover, the desired spin of the ball after the impact[
ω+
By,ω

+
Bz

]
is set for the first, second and third case studies to

[
−100, 0

]
rad/s,[

100, 0
]

rad/s and
[
0,−100

]
rad/s respectively, according to the setting of the

work described in [65].
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The results obtained for each of the three case studies are depicted by their
time histories in Fig.s 3.7, 3.8 and 3.9, respectively. While the 3D trajectories of
both the ball and the paddle are represented in Fig. 3.6, the solid line represents
the ball, while the paddle is depicted by a dashed line. The time histories of each
component pBx, pBy and pBz related to the trajectory of the ball are represented
in Fig.s 3.7(a), 3.8(a) and 3.9(a), respectively, for both of the compared methods:
the solid line graphs the solution obtained by exploiting the method described
by [65], while the dashed curve illustrates the trajectory of the ball obtained using
the proposed method. The figures indicate that method proposed in [108] yields
an improvement over [65] by directing the ball closer to the goal configuration.

The quantitative results for the backspin, topspin and sidespin case studies
are shown in Tables 3.5, 3.6 and 3.7, where A represents the results obtained
employing the Liu’s planner, whereas B the results obtained employing the plan-
ner here proposed. The first two columns of each of the aforementioned tables
refer to the precision of the impact. In both the approaches the results are very
similar. The gist of the comparison may be captured by analyzing the last three
columns of these tables. The final time error is reduced by about an order of
magnitude. The Euclidean norm of the error between the actual final position of
the ball and the desired one is smaller by about an order of magnitude, too.

Unfortunately, experiments are not yet available for the proposed approach
since the practical set-up is under development. However, the switching from
Matlab into C++ language is already accomplished. The computational time
tc required to solve at run-time both the simplified aerodynamic model and the
complete one is show in the last column of Tables 3.5, 3.6 and 3.7. The code
is running on a computer with specifications Intel Core 2 Quad CPU Q6600
@ 2.4 GHz, Ubuntu 12.04 32-bit operating system, including the Levenberg-
Marquardt C++ library [66]. The same numerical results obtained with Matlab
have been retrieved, but the evaluation of the computation burden is more precise,
in the sense that it is the one that will appear during the practical experiments.
To elaborate, compared to [65], the presented method increases the accuracy of
the final desired position an order of magnitude for topspin and sidespin cases
and two orders of magnitude for the backspin case. Furthermore, the C++
implementation of the proposed nonlinear minimization problem, which considers
the full aerodynamic model of the ball, takes about 20 ms to give the desired
velocity of the ball after the impact. This duration is grater than what is shown
in [65], but it is still acceptable for real-time implementation.

Optimal Planner Simulations

For each case study, the paddle trajectory is planned over the time interval
[ta, tb] = [t0, ti − ε], where ε = 0.02 s. The paddle trajectory is supposed to
start still, from the origin of the world frame, with initial orientation R0

P =
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RY (π/2)RX(0), without loss of generality. According to the proposed algorithm,
the position, orientation and linear velocity of the paddle at the impact time are
given by the ball reset map solution. The Euclidean norm of the linear and an-
gular velocities of the paddle, planned with the minimum total acceleration, are
represented by the top and middle plots in Fig.s 3.4(b), 3.5(b), 3.7(b), 3.8(b),
and 3.9(b), for each simulation. Once the desired orientation is achieved with zero
angular velocity, the angular acceleration is set to zero so that the orientation
of the paddle remains the same until the impact occurs. As long as one has the
control authority at the torque level, this control strategy, which switches only
once, is straightforward to implement. Once the impact has occurred at time ti,
notice that the linear velocity of the paddle is exponentially dissipated by the
following term exp(−µ(t − (ti + δ))), where t is the time, µ = 50 and δ = 0.02,
so that the paddle stops. The optimal trajectory discovered by solving the two-
point boundary value problem (3.4) indeed minimizes the L2 norm of the total
acceleration of the paddle. So as to illustrate this fact, another typical trajectory
for the orientation of the paddle is planned. This alternative plan constructs a
third-order polynomial function for the Euler angles, φ and θ, such that the ini-
tial and final orientation and angular velocity constraints are satisfied. Both the
angular acceleration that corresponds to this motion plan and the acceleration
functional J in (3.2) are then computed. For each case study, the bottom time
histories of Fig.s 3.4(b), 3.5(b), 3.7(b), 3.8(b) and 3.9(b), depict the value of the
difference of the acceleration functional between the motion plan devised using
the Euler angles and the optimal motion plan. Notice that the value of this cost
functional is positive at t = ti, indicating that the optimal motion plan indeed
yields a smaller value of the acceleration functional than a typical plan performed
using polynomials on the Euler angles, φ and θ.

Computational Efficiency

About the computational burden of the proposed planner, the code has been
translated in C++ and evaluated on the same PC detailed in the previous Sec-
tion. The boundary value problem for the optimal paddle trajectory planner
takes less than 30 ms. To sum up, after the high-speed vision system gives a
stable trajectory estimation of the ball coming towards our court, it is possible
to compute the desired trajectory for the paddle in 50 ms (20 ms + 30 ms),
hitting the ball with a proper velocity to redirect it to the opposite court at the
desired position with the imposed spin. Another possibility is that, once the
desired impact position, velocity and orientation is determined, one can immedi-
ately start controlling the paddle to achieve these via a PD controller, and revert
to a trajectory following controller once the optimal trajectory is available and
is periodically updated.
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3.4 Optimal Planner for the Ball Juggling Task

The juggling task is here intended as repetitive batting (throwing and catching
in a single collision) of a ball between two paddles, or hands, in a nonprehensile
way. Since juggling actions, in general, require high velocity and precision, the
investigation of the related motion planning is useful to confer dexterity and
powerful manipulation skills to the robotic system. Indeed, many works in the
literature can be found about robotic ball juggling, as explained in Section 3.1.
The aim of this Section is to exploit the single batting primitive to plan an
optimal path for the dual-hand ball juggling task, demonstrating how a complex
nonprehensile manipulation can be dealt with a bottom-up approach, from the
single primitive to the complete task [106].

3.4.1 Modeling of Dual-Hand Ball Juggling

The dynamics of the ball is modeled using the equations (3.7) and (3.10), reported
in Section 3.3.1. In the following, the paddle that in turn is going to catch the
ball is referred to as impacting paddle, whereas the other one is referred to as
free. They are indicated through the i and f subscripts, respectively.

Let ΣW be the fixed world frame, and let Σip and Σfp be the frames placed at
the center of the impacting and free paddles, respectively. The z-axis is denoted as
the outward normal to the surfaces of the paddles. Let pip,vip,ωip,pfp,vfp,ωfp ∈
R3 be position, linear and angular velocities of the impacting and free paddles,
respectively, all expressed in ΣW . Finally, let Rip,Rfp ∈ SO(3) be the rotation
matrices of Σip and Σfp with respect to ΣW , respectively.

The equations of motion for the free and impacting paddles are given by

ṗip = vip, (3.20a)

Ṙip = RipS(ωip), (3.20b)

ṗfp = vfp, (3.20c)

Ṙfp = RfpS(ωfp). (3.20d)

Notice that the ball is acted only at each impact time by means of the linear
and angular velocities of the impacting paddle, which enters the ball dynamics
through the reset map.

3.4.2 Algorithm for Dual-Hand Ball Juggling

In order to accomplish the desired task, the paddles must repetitively intercept
the ball in turn. It is assumed that the algorithm receives as input the measure
of the state of the ball (i.e., through a visual system). This aspect is out of the
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scope of this work. Hence, the goal of the proposed algorithm is to compute
the orientation and the linear velocity of the impacting paddle so as to re-direct
the ball towards the free paddle, similarly to [108]. In order to solve this task,
the algorithm has to know a-priori a desired location where the ball has to be
re-directed after the collision with the paddle, and the time interval ∆t between
two consecutive impacts. Such predetermined locations and ∆t are input values
shaping the trajectory of the ball within the juggling task. They should be thus
tuned according to the available robot capabilities (i.e., maximum joint velocities)
and the reachable workspace. After each collision, the algorithm swaps the free
and impacting paddles.

Fig. 3.10 schematically resumes the solution proposed in [106]. In particular,
after that the visual system provides the configuration of the ball (i.e., the initial
state following the previous impact), solving two nonlinear minimization problems
determines the states of the ball pre- and post- the impact. This allows to solve
the reset map and compute the desired configuration for the impacting paddle.
Afterwards, the optimal trajectory planner computes the minimum acceleration
paths for the free and impacting paddles to respectively reconfigure at the initial
pose and intercept the ball. Finally, a closed loop inverse kinematics provides the
joint motion for the robot to practically accomplish the task.

Computation of the State of the Impacting Paddle

In order to predict the state of the ball before the impact and to properly control
the paddle, a two-stage nonlinear least squares fitting is designed.

The three more relevant positions of the ball in the space are depicted in
Fig. 3.11 for a single iteration of the repetitive dual-hand juggling task. pinit ∈ R3

is the initial position of the ball soon after the previous impact, eventually given
by the visual system; p̄des is the desired location of the previous iteration step;
pdes ∈ R3 is the desired location of the current iteration step where the ball
has to be re-directed after the impact; ∆t is the predetermined time interval
between two impacts. Notice that the location in the space where the collision
between the paddle and the ball happens could be, in general, different from
the predetermined desired location where the ball has to be re-directed after the
impact. It goes without saying that, to obtain a repetitive dual-hand ball juggling
task, the chosen position pdes and the interval time ∆t have to shape the pattern
trajectory of the ball such that the free paddle can intercept the ball within the
robot workspace.

By knowing ∆t and the velocity v+init ∈ R3 after the previous collision, given
again by the external visual system, it is possible to retrieve the predicted pre-
impact states of the ball (pimp,v

−
imp) ∈ R3 through the following minimization
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Figure 3.10: Single iteration scheme of the dual-hand ball juggling algorithm.

Figure 3.11: Snapshot of one iteration of the dual-hand juggling task.
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problem

min
pimp,v

−
imp

∥∥∥∥[p̃init(pimp,v−imp)− pinitṽ+init(pimp,v
−
imp)− v

+
init

]∥∥∥∥2 , (3.21)

where p̃init and ṽ+init are obtained by numerically backward integrating the non-
linear equations (3.7a) and (3.7b) starting from the current optimization vari-
ables. In rough words, the predicted pre-impact states of the ball are chosen
such that, back-integrating the aerodynamic model of the ball by ∆t, the value
of the obtained initial state is close as much as possible to the measured one.

In order to obtain the velocity v+imp ∈ R3 of the ball after the considered
impact, which is necessary to direct the ball towards the predefined desired point
pdes, the following minimization problem

min
v+

imp

∥∥p̃des(v+imp)− pdes∥∥2 , (3.22)

is solved. Notice that p̃des(v
+
imp) is obtained by numerically forward integrating

the nonlinear equations (3.7a) and (3.7b) starting from pimp and the current
value of the optimization variable. The predicted velocity of the ball after the
impact is chosen such that, forward integrating the aerodynamic model of the
ball by ∆t, the value of the obtained final position is close as much as possible
to the desired one.

Hence, it is now possible to determine the configuration of the impacting
paddle. As an assumption, at each iteration, the predicted impact position pimp
for the ball corresponds to the goal position for the impacting paddle. On the
other hand, having solved (3.21) and (3.22), the pose and the velocity of the
impacting paddle are computed through the reset map solution reported in (3.18)
in Section 3.3. In the first iteration only the impacting paddle is actuated; after
that, at each impact, the free paddle is imposed to stop in a rest position p0 ∈ R3

and orientation R0 ∈ SO(3), respectively, yielding

pfp = p0, vfp = 0, Rfp = R0, ωfp = 0. (3.23)

As soon as the first impact occurs, the initial configurations of ball and paddles
for the next juggle cycle is available. Impacting and free paddles are swapped in
order to restart another iteration of the algorithm.

The configurations of the two paddles at each impact time are the inputs
of the optimal trajectory planner which online computes the optimal path for
each paddle from the current state. The optimal trajectories are generated in
SE(3), minimizing the acceleration functional, as detailed in Section 3.2. Finally,
the motion of the robot joints is computed from the planned minimum acceler-
ation Cartesian trajectories for the two paddles through a kinematic inversion
algorithm.
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Table 3.8: Input parameters for ball juggling simulations in the first case study.

Initial position of the ball
[
0.25 0 0.4

]
m

Initial velocity of the ball
[
1.65 −0.2 0.05

]
m/s

First desired point (near right paddle)
[
0 0 0

]
m

Rest position right paddle
[
0 0 −0.1

]
m

Rest position left paddle
[
0.7 0 −0.1

]
m

Rest orientation for both paddles I3×3

3.4.3 Ball Juggling Task Simulations

Numerical results validating the approach are presented through the three case
studies described in the following. For all of them, the considered robot is the
same semi-humanoid considered within Section 3.3. The robot is now equipped
with two paddles firmly attached at its end-effectors (see Fig. 3.11). The dy-
namic parameters considered for these simulations are detailed in Table 3.2 of
Section 3.3. Simulations are implemented in the Matlab environment, in connec-
tion with the V-REP virtual platform by [90]. Within the YouTube video2, the
former and latter case studies are included. The video demonstrates the smooth-
ness of the planned motion for the joints of the semi-humanoid robot, and the
synchronized motion of the two hands/paddles.

First Ball Juggling Case Study

In this case study, with reference to Fig. 3.11, the main assumption is given from
the following equality pdes = pinit, holding for each iteration. This means that
the desired location pdes for the ball after the impact with the paddle has been
put equal to the previous impact location pinit. The only exception is given
by the first iteration since the ball has not performed yet any previous impact.
The very first pdes point should be then assigned. Its value together with the
initial position and velocity of the ball are detailed in Table 3.8. The chosen time
interval between two consecutive impacts is set to the fixed value of ∆t = 0.5 s.
Only for the very first impact, this is set to 0.3 s. The rest positions p0 and
orientations R0 for the paddles are indicated in Table 3.8.

The 3D trajectories planned for the left and right hands of the semi-humanoid
robot and the path of the ball are depicted in Fig. 3.12, where it is possible to
appreciate that the paths planned for the paddles oscillate between the respective
rest positions p0 and the impact points obtained by solving the minimization

2https://youtu.be/VtRe1zE_lhM
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Figure 3.12: 3D trajectories of the ball (red line), left (blue line) and right (black
line) paddles, for the first case study. The green marker defines the initial position
of the ball.

problems previously introduced. The picture shows that the ball follows the
juggling pattern.

Fig. 3.15(a) shows that the average Euclidean norm of the error between
the desired points and the actual ones is about 2 cm. Only for the very first
iteration, the figure shows the actual impact point compared to the predicted one.
The observed error is mainly justified by the numerical optimization procedure
employed in the presented formulation and explained in the previous sections.

Fig. 3.13 presents the time sequence of the semi-humanoid motion, resulting
from the kinematic inversion, during the first two juggling iterations.

Second Ball Juggling Case Study

In this case study, the assumption made in the previous one is relaxed, and thus
pdes 6= pinit. Therefore, seven different desired points are considered and listed
in Table 3.9. In the same table, the initial position and velocity of the ball
are detailed, which are different from the previous case study. The chosen time
interval between two consecutive impacts is set to the fixed value of ∆t = 0.5 s.
Only for the very first impact, this is set to 0.3 s. The rest positions p0 and
orientationsR0 for the paddles are the same as the first case study (see Table 3.8).

The shape of the minimum acceleration paths planned for the paddles of the
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Figure 3.13: Time sequence in the V-REP environment of the motion planned
for the semi-humanoid robot to accomplish the first two ball juggling iterations.
The first two impacts occur at 0.3 s and 0.8 s. See the accompanying video.
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Table 3.9: Input parameters for ball juggling simulations in the second case study.

Initial position of the ball
[
0.5 −0.2 0.5

]
m

Initial velocity of the ball
[
1 −0.2 0.05

]
m/s

1st desired point
[
0 0 0

]
m

2nd desired point
[
0 −0.01 0.06

]
m

3rd desired point
[
0.7 −0.085 0.1026

]
m

4th desired point
[
0 −0.02 0.12

]
m

5th desired point
[
0.7 −0.095 0.1626

]
m

6th desired point
[
0 −0.03 0.18

]
m

7th desired point
[
0.7 −0.105 0.2226

]
m

Table 3.10: Input parameters for ball juggling simulations in the third case study.

1st impact ∆t 0.6 s

2nd impact ∆t 0.55 s

3rd impact ∆t 0.5 s

4th impact ∆t 0.45 s

5th impact ∆t 0.4 s

6th impact ∆t 0.35 s

7th impact ∆t 0.3 s

semi-humanoid and the ball path for this second case study are depicted in Fig.
3.14. Again, the average Euclidean norm of the error between the desired points
and the actual ones is about 2 cm, as plotted in Fig. 3.15(b).

Third Ball Juggling Case Study

In this case study, the assumption pdes = pinit is re-introduced, while the value
of ∆t now changes during each iteration. Therefore, seven different intervals of
time between two impacts are considered in Table 3.10. The initial position and
velocity of the ball are equal to the ones of the first case study, as well as the
very first desired point. In addition, the rest positions p0 and orientations R0

for the paddles are also equal to the first case study (see Table 3.8).
The shape of the minimum acceleration paths planned for the paddles of the

semi-humanoid and the ball path for this third case study are depicted in Fig.
3.16. It is possible to observe that, keeping fixed the desired points as high-
lighted in the assumption, the time ∆t shapes the juggling patter. In particular,
by reducing the time interval, the maximum height of the ball reduces as well.
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Figure 3.14: 3D trajectories of the ball (red line), left (blue line) and right (black
line) paddles, for the second case study. The green marker defines the initial
position of the ball.
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(a) First ball juggling case study.
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(b) Second ball juggling case study.

Figure 3.15: Norm of the error between the desired positions and the actual ones,
at each impact time. Blue circles represent the left impact errors, while the black
stars depict the right ones.
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Figure 3.16: 3D trajectories of the ball (red line), left (blue line) and right (black
line) paddles, for the third case study. The green marker defines the initial
position of the ball.

Moreover, it is possible to notice from the same figure that, with a shorter ∆t,
the paddle impacts the ball before this last reaches the desired position pdes, as
in general depicted in Fig. 3.11.

3.5 Conclusion

This Chapter shows the theory to design an optimal trajectory planner in SE(3)
by solving a boundary value problem with proper boundary conditions, and the
hybrid dynamics of the ball given by its aerodynamics and its reset map to be
exploited in the proposed model-based motion planner. The optimal planner is
then applied to generate the motion of the robot end-effector to hit the ball at
the impact time ad direct it towards a predefined location - batting motion prim-
itive. In the conceptual scheme of the optimal motion planner, after that the
visual system provides the configuration of the ball, the solution of a sequence of
nonlinear minimization problems determines the states of the ball pre- and post-
the impact. This allows to solve the reset map and compute the desired con-
figuration for the impacting paddle. Afterwards, the optimal trajectory planner
computes the minimum acceleration paths for the paddle to intercept the ball.
Finally, a closed loop inverse kinematics provides the joint motion for the robot
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to practically accomplish the task with the semi-humanoid robot. Furthermore,
the batting primitive is exploited to engender a dual-hand ball juggling task,
demonstrating that the framework presented in this Chapter produces a versatile
autonomous motion planner for a number of impact manipulation tasks.

The main contribution of this Chapter consists in the design of a motion plan-
ner that is able to provide in real-time the optimal path for the robot end-effector
to autonomously perform the batting task, assuming to have as input only the
visual measurement of the initial configuration of the ball and the desired impact
locations. The algorithm has been divided in the following three main phases:
the prediction of the motion of the ball, the selection of the configuration of the
ball at impact time, and the trajectory planning for the paddle. About the first
and second stages, the proposed nonlinear estimation techniques improve the
control accuracy with respect to other related works [65, 79], while dealing with
the real-time constraints. In those works, the impact position and pre-impact
velocity of the ball are a priori known. Such assumptions are quite restrictive:
hence, in this Chapter the determination of such ball impact configuration is
addressed at run-time. Additionally, the impact time is not a priori defined in
[107], as instead in [108], but it is online predicted. Regarding the third stage, a
minimum acceleration planner in SE(3), based on the theory of differential geom-
etry, is used to generate an optimal path for the manipulator, following [120]. By
choosing the acceleration norm as measure of smoothness, the trajectories can
be made to satisfy boundary conditions on the velocities. In order to ensure that
the computed trajectories are independent of the parametrization of positions
and orientations, the notions of Riemannian metric and covariant derivative are
borrowed from differential geometry and the problem is formulated as a varia-
tional problem on the Lie group of spatial rigid body displacements. The batting
and the dual-hand ball juggling motion planners are implemented in the Matlab
environment in connection with the V-Rep platform to numerically evaluate the
algorithm and to display the smoothness of the motion planned for the joints of
a semi-humanoid robot.
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Chapter 4

Nonlinear Predictive
Control of Multi-contact
Walking

4.1 Introduction

Currently, humanoid robots are still not able to robustly use their arms to
gain stability and safety, while executing locomotion tasks - the so-called loco-
manipulation [17, 36] - or to robustly deal with multiple non-coplanar contacts
with the environment - the so-called multi-contact locomotion tasks [27, 86, 104].
Manipulation of an object is essentially functionally identical to locomotion with
only relativistic differences, see Fig. 4.1 1. In object manipulation, the manipu-
lator is typically larger than the manipulated object, and so the object is moved
and controlled relative to the manipulator origin. But in locomotion, the object
being manipulated is the ground, which is much larger than the manipulator,
so the origin of the manipulator moves relative to the manipulated object. In
both these cases there is a relative movement between the object and manipu-
lator origin, and the goal is to control that movement [111]. For instance, two
slow walking legs can be seen as two fingers grasping a much larger object, i.e.,
the earth; a bouncing ball system can be assimilated to an hopping robot; and
there is a clear analogy between the juggling and the running task. Under certain
conditions, it is possible to assume that locomotion is a kind of manipulation.
Some works in the literature have already highlighted that balancing, slow walk-
ing gaits and grasping tasks share several similarities. Some works have found

1From the German DLR Robotics and Mechatronics website - http://www.dlr.de/.
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Figure 4.1: Analogy between balancing and grasping.

the duality between a multi-fingered grasp and a multi-legged stance to estab-
lish the correctness of the controller by a quasi-static analysis borrowed from
the robot manipulation literature [52, 85]. These approaches are based on the
observation that the problems of grasping an object and balancing a robot are
fundamentally similar, in the sense that both try to achieve a desired wrench
(on the object in the grasping case, on the robot in the balancing case) based
on the application of suitable forces at the contact points (at the fingertips or
at the feet). Moreover, in the nonprehensile manipulation tasks, similarly to the
bipedal walking task, the effect of gravity must be controlled to hold the object,
or to balance the robot, as explained in [10]. Interestingly, both nonprehensile
dynamic manipulation and multi-contact dynamic walking share some common
features, since they intrinsically involve:

• fast and hybrid dynamics;

• multiple non-coplanar contacts;

• interaction between complex shapes.

In legged locomotion one of the main difficulty is given by the dynamic con-
straint on the linear and angular momentum of the robot, due to its dependence
on external contact forces to control them [119]. This is particularly evident
in the Newton–Euler equations of motion of the robot, which can typically be
expressed in the following form:[

m(c̈+ g)

mc× (c̈+ g) + L̇

]
∈ C, (4.1)
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where m ∈ R is the mass of the robot, c ∈ R3 is the position of its CoM in a world
frame, L ∈ R3 is its angular momentum with respect to the CoM, and C ⊂ R6

is the cone of available contact wrenches (forces and torques), which depends on
the existing contacts between the robot and its environment.

This model allows to tackle scenarios such as bipedal legged locomotion, or
even dynamic object manipulation, to generate a reference motion that, in gen-
eral, should be:

• kinematically feasible, i.e. ensuring that the constraints on the physics of
the system are always respected;

• dynamically feasible, i.e. guaranteeing that the center of pressure (CoP) is
inside the support polygon, or, at a torque level, that the dynamic wrench
is inside the contact wrench cone;

• robust, i.e. maximizing some kind of robustness metric in the dynamic
feasibility condition;

• smooth, i.e. minimizing the acceleration, or the jerk, of the CoM.

Additonally, in particular for dynamic walking tasks, natural motion results
from the minimization of the centroidal angular momentum. Even if a high
angular momentum does not always result in a fall, low angular momentum
indicates a good balance and a low fall risk during locomotion. For dynamic
object manipulation, the centroidal angular momentum should be regulated in
a task-specific way. For example, if the manipulation is supposed to end with a
stationary object, the final centroidal angular momentum is supposed to be zero,
otherwise other constraints can be conceived. However, in this Chapter the focus
is on multi-contact dynamic walking applications.

The standard approach to compute and control walking motions, satisfy-
ing the balance contraints, is through MPC [74, 119]. When walking on a
flat, or moderately uneven ground, as long as hand contacts are not neces-
sary, the constraint (4.1) can take a linear form [18], and very efficient nu-
merical methods can be employed, to compute such an MPC scheme exactly
in a fraction of milli-second. However, humans use hand contacts to interact
with the environment, or to simply realize otherwise unfeasible motions. Hand
contacts clearly distribute weight, and then improve stability and energetic ef-
ficiency [3, 11, 29, 49, 58, 62, 72]. The work [45] indeed exploits the relation
between the force exerted by the robot to grasp a handrail and the size of the
region of the CoP for keeping balance. It shows that the stronger the hand of
a robot grasps a handrail, the larger the region of balance becomes. Whereas,
another approach to walking upstairs and downstairs with external support [59]
shows that the handrail support can reduce the motor power consumption up to
25%.
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Multi-contact locomotion control might have decisive impact in some future
robotic applications. It enables a robot to stand up after a fall, or evolve in
unstructured environments. For example, in an industrial process, where a walk-
ing robot might be required to walk upstairs and downstairs for several hours,
the reduction of energy consumption with the use of a handrail could be cru-
cial for efficiency. Nevertheless, with the introduction of additional contacts, the
constraint (4.1) becomes generally nonlinear, and it is necessary to consider a
Newton method to obtain a solution, a potentially time-consuming and uncer-
tain procedure involving iterative linearizations.

In an MPC scheme, a sequence of optimization problems have to be solved,
one at each sampling time, which are closely related. Using tools from para-
metric optimization and continuation methods, it is possible to obtain very good
approximate solutions to these nonlinear problems, with very few, or even only
one iteration at each sampling time [30]. The problem, however, is that these ap-
proximate solutions may not always be feasible and satisfy exactly the nonlinear
constraints.

This is the problem that is addressed in this Chapter, by proposing a Newton
method based on carefully crafted linear approximate models, which ensure that
the nonlinear constraint (4.1) is always satisfied exactly. The approach is based on
a linear approximation which is made robust to polytopic uncertainties, following
the same procedure as in [18], and constraining each iteration of the Newton
method to fall within the limits of the specified polytopic uncertainty. A specific
form of the constraint (4.1) is used, where a CoP is introduced for foot contacts on
the ground, while other external forces are considered as a generic force fe ∈ R3

and torque ne ∈ R3 acting on the CoM, as proposed in [3]. Simulation results
display the generated walking motions up and down stairs with an additional
hand support, which satisfies exactly the balance constraint (4.1) [105].

4.2 Minimization of the Angular Momentum

For a manipulation or a legged locomotion task, the momentum dynamics can be
characterized formulating the dynamic balance of momenta of either the object,
in case of manipulation, or the robot, in case of walking task. Then, rewriting
the Newton–Euler equations of motion (4.1)

l̇ = mg + Σif i, (4.2)

k̇ = (c− sf )×mg + Σi(si − sf )× f i + τ i,

ċ =
l

m
,
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where c ∈ R3 is the position of the CoM of the object/robot, in the world frame,
l ∈ R3 is the linear momentum of the object/robot in the world frame, k ∈ R3

is its angular momentum with respect to sf ∈ R3, which is one of the support
points, m ∈ R is the mass, si ∈ R3 is the i -th support point, f i ∈ R3 and
τ i ∈ R3 are respectively the i -th support force and torque, and g ∈ R3 is the
gravity acceleration vector. In the following superscripts x, y and z indicate the
corresponding components of a vector.

When generating standard walking motions, the variation of the centroidal
angular momentum is assumed to be zero, and some simplifications, like constant
height of the CoM and co-planar contact points, allow to keep the model linear
and well suited for preview based control [119]. In [55], the authors present the
resolved momentum control, that is one of the first attempt to generate whole
body motion of a humanoid robot such that the resultant total linear and angular
momenta become specified values. They found a linear relation between the total
momentum and the joint speeds; and, as case study, the kick action is evaluated
considering zero reference angular momentum.

Nevertheless, while dealing with more complex tasks, like walking motion
in multi-contact configurations for example, several simplifying assumptions are
no more valid. It is difficult to preserve a linear structure of the optimization
problem, and model predictive control methods become computationally hard to
apply at once. The general approach to motion generation with such complex
nonlinear models is to resort to nonlinear solvers such as sequential quadratic
programming [24], [49], or interior point methods [87], that might require long
time to find a solution, or, in the worst case, they could not find it at all. For
this reason, several methods are investigated in the literature to deal with the
non-convexity of the model in such a way that it can be formulated as quadratic
program (QP) [28], [86], or quadratically constrained QP [23]. Here, a compar-
ison between different approaches to the minimization of the centroidal angular
momentum is showed.

In the expression of the centroidal angular momentum

kc = k −m(c− sf )× ċ, (4.3)

the cross product clearly induces a nonlinearity, considering the motion of the
CoM as decision variable. Similarly, in (4.2), when both contact points and
contact forces are considered as decision variables, the same kind of nonlinearity
appears in the cross product (si−sf )×f i. Therefore, this non-convexity appears
not only in the generation of a natural motion for the robot, but also in the
problem of planning contact forces and contact locations online.

In [28], in order to plan the motion through convex optimization, a convex
upper bound of the L1 norm of the centroidal angular momentum is minimized
with respect to the decision variables k, c, ċ, considering pre-planned contact
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positions. An upper bound on kc, suitable for the inclusion in a preview based
control, can be conceived in different ways. Several recent works in the literature
are focused on the reformulation of this non-convexity in the centroidal angular
momentum.

The authors of [28] exploit a bounding on the 3D position of the CoM, stating
that with pre-specified footsteps the admissible region of the CoM is also bounded.
In particular, for a polytopic admissible CoM region, Pv, with n vertices, cxyz ∈
R3, this polytope can be represented by linear constraints. The convex upper
bound of |kc|12 is obtained replacing the CoM position with the vertex of the
polytope that maximizes the L1 norm of the centroidal angular momentum

max
cxyz∈Pv

|k −m(c− sf )× ċ|1 . (4.4)

Another upper bound can be proposed using the result showed in [18], which
bounds the variation of vertical motion, with the aim to generate a 3D motion
of the CoM as high as possible above the ground. This approach arises from the
observation that in human walking the vertical direction of motion is the less
variable one. Considering a polytopic admissible region for the vertical position
and velocity of the CoM, Pz, with 4 vertices, [cz, ċz] ∈ R2 (which provides a
convex set of constraints), and the corresponding position and velocity of the
CoM, cz = [cx, cy, cz] ∈ R3 and ċz = [ċx, ċy, ċz] ∈ R3, the proposed upper bound
of |kc|1 is given by

max
cz,ċz∈Pz

|k −m(cz − sf )× ċz|1 . (4.5)

Though it provides a bound only on the horizontal components of the cen-
troidal angular momentum, it results in a less constrained motion with respect
to the approach in [28] (4 constraints in place of n ≥ 6), and it can be applied
in case of adaptive footstep placement. It is, however, reasonable to neglect the
vertical component of kc, since it does not affect significantly the motion of the
CoM. In both the above mentioned approaches, an online tuning of the polytopic
admissible region would definitely provide the ability to deal with less structured
walking motions, as detailed in the following Sections.

A third method, similarly to [86], can be thought exploiting a decomposition
of the cross product in scalar products, and then in differences of quadratic
functions

(c− sf )× ċ =
1

α

aT b̃gT d̃

eT f̃

 =
1

4α

 ||a+ b̃||22−||a− b̃||22
||g + d̃||22−||g − d̃||22
||e+ f̃ ||22−||e− f̃ ||22

 , (4.6)

2The operator |·|1 indicates here the L1 norm.
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where a = [szf − cz, cy − s
y
f ]T , b = [ċy, ċz]T , g = [cz − szf , sxf − cx]T , d = [ċx, ċz]T ,

e = [syf − cy, cx − sxf ]T , f = [ċx, ċy]T , and b̃ = αb, d̃ = αd, f̃ = αf . The
normalization factor α > 0 is necessary to match the units of measurement of
each term of the decomposition. Consequently, an upper bound on the L1 norm
of the centroidal angular momentum is given by the triangular inequality3

|k −m(c− sf )× ċ|1≤ |k|1+
m

α

(
|aT b̃|1+|gT d̃|1+|eT f̃ |1

)
=

|k|1+
m

4α

(∣∣∣||a+ b̃||22−||a− b̃||22
∣∣∣
1

+
∣∣∣||g + d̃||22−||g − d̃||22

∣∣∣
1

+
∣∣∣||e+ f̃ ||22−||e− f̃ ||22

∣∣∣
1

)
≤

|k|1+
m

4α

(
||a+ b̃||22+||a− b̃||22+||g + d̃||22+||g − d̃||22+||e+ f̃ ||22+||e− f̃ ||22

)
=

|k|1+
m

2α

(
||a||22+||b̃||22+||g||22+||d̃||22+||e||22+||f̃ ||22

)
. (4.7)

Since, for any x and y vectors in Rn, it holds

||x||22+||y||22−2|xTy|1= ||x− y||22, (4.8)

in order to obtain the tightest upper bound, the normalization factor α should
be chosen in such a way to minimize the difference between x and y, which in
this case corresponds to

h(α) =
m

2α

(
||a− b̃||22+||g − d̃||22+||e− f̃ ||22

)
. (4.9)

This approach provides a bound on the three components of the centroidal an-
gular momentum, without constraining the motion of the CoM.

4.2.1 Comparative Results for Walking Applications

In order to numerically compare the different approaches, two sample walking
motions are considered, namely on flat floor and on stairs, see Fig. 4.2, resulting
from the implementation of a standard walking pattern generator. In this simu-
lation the height of stairs is 0.1 m. Here the focus is on the cross product that
appears in the centroidal angular momentum, (c−sf )× ċ, since the term k is not
a source of non-convexity if it is chosen as parameter in the minimization, which
is a reasonable design choice. In this context, sf is the pre-planned position of the
support foot. The cross product that appears in the derivative of the centroidal
angular momentum, k̇c = k̇− (c− sf )× c̈, is evaluated as well, since it could be
another cost term to minimize. In the following, the upper bound resulting from
the methods inspired by [28], [18], [86] are, respectively, named A, B, C. It is
necessary to point out that a strong claim on the best method cannot be stated,
because it is always difficult to obtain a fair comparison, and this analysis should
be validated generating online the linear and angular momenta; however, it can
be used as a preliminary result.

3The operator ||·||2 indicates here the L2 norm.
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(a) CoM walking sample motion.
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(b) CoM climbing upstairs and downstairs sample motion.

Figure 4.2: Sample motion of the CoM.
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ċz
[m

/s
]

-0.05

0

0.05

(b) CoM velocity w.r.t. the world frame.
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frame.

Figure 4.3: CoM for walking on flat floor. The top, middle and bottom figures
depict the x, y, z components respectively.

Walking on Flat Floor

Considering standard walking on flat floor, in order to evaluate the upper bound
A, 8 vertices for the admissible polytopic region of position of the CoM are chosen
according to this specific kind of motion. The region is centered at 0.8 m and is
a box of size 0.2 m × 0.3 m × 0.08 m. This box is obtained exploiting the data
depicted in Fig. 4.3(a). Whereas, to compute the bound B on the centroidal
angular momentm, the admissible region is such that the vertical position of the
CoM and its vertical velocity are inside a box of size 0.08 m × 0.16 m/s, which
is extracted from the data showed in the bottom picture in Fig. 4.3(b). While,
for the derivative of the centroidal angular momentum, the admissible region
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Figure 4.4: Choice of the normalization factor α for the angular momentum (top)
and for its derivative (bottom), in case of walking on flat floor.
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walking on flat floor. The blue line is the actual value, the red line is the bound
inspired by [28], the black line is the bound inspired by [18], and the green line
is the bound inspired by [86].
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Figure 4.6: Distance between the actual value of the cross product and its upper
bound, in the angular momentum (top) and in its derivative (bottom), in case of
walking on flat floor. The blue dashed line is from the approach inspired by [28]
and the black line is from the approach inspired by [18].

is such that the vertical position of the CoM and its vertical acceleration are
inside a box of size 0.08 m × 1.2 m/s2, according to the bottom picture in Fig.
4.3(c). Besides, for the bound C, the normalization factor, α, results from the
minimization of h(α), which is reported in Fig. 4.4. In Fig. 4.5, a comparison
between the actual value of |(c − sf ) × ċ|1 and the upper bounds obtained with
the different approaches reveals that, for walking on flat floor, the tightest bound
is the one inspired by [18]. In order to provide a measurement of the distance
between the actual value of the cross product and its upper bound for methods
A and B, the vertices of the admissible regions for the CoM which maximizes the
L1 norm of the centroidal angular momentum are defined as c∗xyz and [c∗z, ċ

∗
z], for

methods A and B respectively. Consequently, the cross product v = (c− sf )× ċ
for methods A and B corresponds respectively to: vA = (c∗xyz − sf ) × ċ, and
vB = (c∗z − sf )× ċ∗z. The Euclidean norms of the error on the cross products are
given by

d(t) = ||v − vA||2, d(t) = ||v − vB ||2, (4.10)

for method A and B respectively. Fig. 4.6 shows the evolution of d(t) for both
methods, confirming that the tightest bound is the one inspired by [18].
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Figure 4.7: CoM for walking on stairs. The top, middle and bottom figures depict
the x, y, z components respectively.
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Figure 4.8: Comparison between the upper bounds on the L1 norm of the cross
product in the angular momentum (top) and in its derivative (bottom), in case
of walking on stairs. The blue line is the actual value, the red line is the bound
inspired by [28], the black line is the bound inspired by [18], and the green line
is the bound inspired by [86].

Climbing Upstairs and Downstairs

For walking on stairs, the admissible polytopic regions are adapted to the motion
depicted in Fig. 4.7. For the upper bound A, the CoM is constrained in a
box of size 0.3 m × 0.4 m × 0.14 m, according to the motion depicted in Fig.
4.7(a), where walking upstairs occurs in the time interval [6s, 10s] and walking
downstairs occurs in the time interval [12s, 16s]. In order to compute the bound
B on the centroidal angular momentm, the admissible region is a box of size 0.14
m × 0.8 m/s, see the bottom picture in Fig. 4.7(b). While, for the derivative of
the centroidal angular momentum, the admissible region is a box of size 0.14 m ×
4 m/s2, see the bottom picture in Fig. 4.7(c). For the bound C, the normalization
factor α again results from the minimization of h(α). In Fig. 4.8, the comparison
between the actual value of |(c−sf )×ċ|1 and the upper bounds obtained with the
different approaches reveals that, even if in the average over the whole interval of
time the tightest bound is C, considering exclusively time intervals when walking
on stairs is planned, the tightest bound results B. This is due to the choice of the
box on vertical motion that is well suited for high vertical displacements. The
result of the analysis suggests that the online adjustment of the box related to
the upper bound B leads to the best bounding solution.
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4.3 Nonlinear Model Predictive Control with Al-
ways Feasible Iterates

Even if humans often use hands contacts to achieve more stable poses and move-
ments, the problem of generating whole-body motions with multiple contacts for
humanoid robots is very challenging and the traditional approaches to guaran-
tee balance cannot be used. This Section presents a NMPC scheme, where the
approach inspired by [18] is online adapted. The idea is built on the insight,
described in the previous Section, that variations in the vertical direction of mo-
tion are much less relevant than variations in the posterior-anterior directions of
motion for a walking task. Therefore, a transformation of variables is designed
to properly bound the vertical motion, and iteratively adapt the bounds online.
The proposed NMPC approach is able to generate reference walking motions in
case of multi-contact walking [105].

4.3.1 Model Predictive Control

Model predictive control allows to impose constraints that will be respected
within all the preview horizon. For this reason, it is widely adopted to guar-
antee balance for walking pattern generation [119]. MPC solves online, at each
sampling instant, a finite horizon open-loop optimal control problem, using the
current state of the plant as the initial state; the optimization yields an optimal
control sequence and the first control in this sequence is applied to the plant
[74]. The MPC algorithm consists in the three following steps, executed at each
sampling time:

• measurement of the actual state;

• computation of the control that optimizes a given state-dependent cost
function, on a finite horizon, starting from the current discrete time;

• application of the control input at the first-time index only.

This control framework is deeply inspected for walking pattern generation since
many years [119], because it allows to impose constraints that will be respected
by all states of the preview horizon. MPC allows to control the system such that
future states are also taken into account.

Typically, in the MPC technique, the model is iterated over N discrete steps,
obtaining a condensed problem formulation where the previewed future states
are a function of the current state and of the current control inputs. In this
context, the state is given by the linear position, velocity and acceleration of the
CoM, at time kT (where T ∈ R is the sampling period), for each υ = {x, y, z}
Cartesian coordinate, ĉυk =

[
cυk ċυk c̈υk

]T ∈ R3. Whereas, the input is given by
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the jerk of the CoM and the external forces and torques, at time kT ,
...
c υk ∈ R.

The output of this walking system is the CoP, at time kT . The trajectories of
the CoM are discretized as piecewise cubic polynomials, for each υ = {x, y, z}
Cartesian coordinate, [118]

ĉυk+1 = Aĉυk +B
...
c υk , (4.11)

where,

A =

1 T T 2

2
0 1 T
0 0 1

 , B =

T 3

6
T 2

2
T

 . (4.12)

4.3.2 Introducing the CoP

Let’s consider the contact forces f i ∈ R3 between the feet and the ground sep-
arately from the rest of external forces and torques in the Newton and Euler
equations of motion, as proposed in [3]:

m(c̈+ g) = fe +
∑
i

f i, (4.13)

mc× (c̈+ g) + L̇ = ne + c× fe +
∑
i

si × f i, (4.14)

where si ∈ R3 are the positions of the contact points between the feet and the
ground, and everything else is as in (4.1).

Dividing the Euler equation by the z component of the Newton equation
results

mc× (c̈+ g)− c× fe − ne + L̇

m(c̈z + gz)− fze
=

∑
i si × f i∑
i f

z
i

. (4.15)

In the proposed approach, dynamic feasibility needs to be checked only every
100 ms. By synchronizing this sampling period with the single support phases,
it reasonably assumed that, even when walking on uneven ground, dynamic fea-
sibility needs to be checked only at time instances where all contact points are
coplanar. For this reason, a different frame for each ground contact surface is
chosen in such a way that all the corresponding contact points have the same
height, szi = sz, and gravity is orthogonal to the ground, gx = gy = 0. Focusing
on the x and y components of equation 4.15, the CoP is now introduced∑

i s
xy
i f

z
i∑

i f
z
i

= cxy − (cz − sz)(mc̈xy − fxye )

m(c̈z + gz)− fze
− Ω ñxy

m(c̈z + gz)− fze
, (4.16)
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where ñ = L̇−ne =
∑
i(si − c)× f i is the torque exerted by the contact forces

f i with respect to the CoM, and

Ω =

[
0 1
−1 0

]
.

Note that the CoP is a linear function of the x and y components of motion (cxy,
c̈xy, fxye , ñxy), and a nonlinear function of the z components (cz, c̈z, fze ). This
model has been chosen for simplicity and for computational issues. It describes
the components of motion which are independent from the actuation power of the
robot. Validity of this simplified model has been tested with whole body control
simulations, presented in Section 4.4.1.

Dynamic Feasibility Constraint

Notice how the dynamic feasibility constraint in case of multi-contact walking
differs from the standard walking, or the 3D walking, case. Since the contact
forces with the ground are usually unilateral, fzi ≥ 0 for all i, the CoP must lie
within the convex hull of the contact points sxyi , S(sxyi ). The classical expression
of the constraint on the CoP in case of standard walking motion is given by [54]

p = cxy − hz

gz
c̈xy ∈ S(sxyi ), (4.17)

where the height of the CoM, hz ∈ R, is assumed fixed. While in case of 3D
motion it can be formulated as [18]

p = cxy − cz − sz

c̈z + gz
c̈xy ∈ S(sxyi ), (4.18)

where the height of the CoM with respect to the height of the support foot already
introduces a nonlinearity in the constraint. In the multi-contact configuration
the external force and torque are mapped in the dynamic feasibility constraint
as follows [105]

p = cxy − (cz − sz)(mc̈xy − fxye )

m(c̈z + gz)− fze
− Ω ñxy

m(c̈z + gz)− fze
∈ S(sxyi ). (4.19)

In this case the constraint includes both the variable height of the CoM and the
interaction of the robot with the environment, modeled as the external wrench.
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4.3.3 MPC Constraints and Objectives

Constraints

The constraints included in the MPC formulation are the following. Firstly, the
dynamic feasibility constraint in case of multi-contact walking:

p ∈ S(sxyi ). (4.20)

Secondly, the kinematic constraint, where the maximal reachable region for the
CoM with respect to the center of the support foot sf ∈ R3, is typically approx-
imated by a convex polytope, is given by:

Ak(c− sf ) ≤ bk, (4.21)

where the expression of Ak and bk can be derived from the paper [18]. Finally,
external forces and torques are bounded as:

fe ≤ fe ≤ fe, ñ ≤ ñ ≤ ñ. (4.22)

Regarding the bounding of the external wrench, the simple approach proposed
in [59] is followed; the constraint on ñ bounds the variation of angular momentum
created by contacts between the robot and its environment on the CoM.

Cost Terms

One of the objectives of the proposed approach is to minimize the distance be-
tween the CoM and a high enough reference c̄zs ∈ R,

o1 = ‖(cz − sz)− c̄zs‖
2
. (4.23)

Then, robustness of walking motion to perturbations is improved by minimizing
the deviation of the CoP from the center of the support foot sxyf ,

o2 =
∥∥∥p− sxyf ∥∥∥2 . (4.24)

And, additionally, motion smoothness is improved by minimizing additionally the
jerk of the CoM and the external wrench,

o3 = ‖...c ‖2 , o4 = ‖fe‖
2
, o5 = ‖ñ‖2 . (4.25)

The proposed cost terms are quite standard for walking motion generation.
The minimization of the external wrench is mainly introduced as a form of regu-
larization of the objective function. More sophisticated performance metric could
be included in the cost function, for example considering a measurement of en-
ergy consumption from joint torques, but this is out of the scope of the work.
The simplicity of the proposed cost terms make them suitable for the inclusion
in a preview control approach.
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4.3.4 Optimal Control Problem

In the end, to find the trajectories of the CoM and the external wrench that
satisfy the robot dynamics, while generating a motion similar to the one observed
in humans, an OCP is formulated in principle, on a finite time horizon Th

min...
c ,f e,ñ

∫ Th

0

5∑
i=1

wioidt

subject to (4.20), (4.21), (4.22), ∀t,

(4.26)

where oi are the cost terms reported in (4.23), (4.24), and (4.25), and wi are the
corresponding weights.

4.3.5 Always Feasible Newton Iterates

In the following the proposition for making sure that every iteration of the Newton
scheme is always feasible, satisfying exactly the nonlinear constraint (4.1), is
presented.

Robustness to Polytopic Uncertainties

Observing that equation (4.16) is linear with respect to the x and y components
of motion, and nonlinear with respect to its z components, walking motions up
and down stairs were generated in [18] by adopting a Linear MPC scheme on
the x and y components, that was made robust to the z component, considered
as a polytopic uncertainty. A similar approach is here applied, including the
additional capacity to use hand support.

Equation (4.16) can be reformulated as follows,

p(ζ1, ζ2) = cxy − ζ1
(
c̈xy − f

xy
e

m

)
+ ζ2Ω ñ

xy, (4.27)

by introducing

ζ1 =
m(cz − sz)

m(c̈z + gz)− fze
, ζ2 =

1

m(c̈z + gz)− fze
. (4.28)

Note that this equation is linear with respect to ζ1 and ζ2. Let’s consider now
that these variables stay between some bounds:

0 ≤ ζ
1
≤ ζ1 ≤ ζ1, 0 ≤ ζ

2
≤ ζ2 ≤ ζ2. (4.29)

Ensuring that the constraint (4.20) is satisfied for all extreme values of ζ1 and
ζ2, guarantees that it is satisfied for all values in between, by a simple convexity
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Figure 4.9: Scheme of the Nonlinear MPC approach.

argument:

{p(ζ
1
, ζ

2
), p(ζ

1
, ζ2), p(ζ1, ζ2), p(ζ1, ζ2)} ⊂ S(sxyi ) (4.30)

⇓
p(ζ1, ζ2) ∈ S(sxyi ).

Since the constraint (4.30) is defined with fixed, extreme values of ζ1 and ζ2,
equation (4.27) does not involve anymore the z components of motion, and is
simply linear with respect to its x and y components.

On the other hand, the combination of (4.28) and (4.29) imposes linear con-
straints on the z components of motion:

ζ
1
(m(c̈z + gz)− fze ) ≤m(cz − sz) ≤ ζ1(m(c̈z + gz)− fze ), (4.31)

ζ
−1
2 ≤m(c̈z + gz)− fze ≤ ζ

−1
2
. (4.32)

This way, since the x and y components of motion satisfy the linear con-
straint (4.30) while the z components satisfy the linear constraints (4.31) and (4.32),
the 3D motion satisfies the nonlinear constraint (4.20).

Constraining Newton Iterates

Each iteration of a Newton scheme involves computing the solution to a linear
approximation of the nonlinear problem. The key idea of the approach is to
constrain each of these iterations, to satisfy the linear constraints (4.30), (4.31)
and (4.32), in order to make sure that the nonlinear constraint (4.20) is always
satisfied exactly.

The value of the variables ζ1 and ζ2 over the whole MPC horizon is computed
from the previous iterate (j − 1), and bounds for the next iterate (j) are defined
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Table 4.1: Walking simulation parameters.

Sampling period 0.1 s

Length of the MPC horizon 1.6 s

Height of the stairs 0.1 m

Target height for the CoM c̄zs = 0.88 m

Mass of the robot m = 50 kg

Size of the feet 6×12 cm2

Bounds on fe fυ
e

= −20 N, f
υ

e = 20 N, ∀υ = {x, y, z}
Bounds on ñ ñυ = −20 Nm, ñ

υ
= 20 Nm, ∀υ = {x, y}

Polytopic uncertainty µ1 = 0.02 s2, µ2 = 0.001 N−1

accordingly in the following way:

ζ
1

= ζ
(j−1)
1 − kµ1 ≤ ζ(j)1 ≤ ζ(j−1)1 + kµ1 = ζ1, (4.33)

ζ
2

= ζ
(j−1)
2 − kµ2 ≤ ζ(j)2 ≤ ζ(j−1)2 + kµ2 = ζ2, (4.34)

with positive constants k, µ1 and µ2.
Fig. 4.9 shows a scheme of the Nonlinear MPC approach. At each iteration

j of the Newton algorithm, the nonlinear expression of the CoP (4.16) is used
to update the bounds on ζ1 and ζ2; thereafter, the quadratic problem, resulting
from the linear approximation of the optimal control problem (4.26), is solved.
The proposed Newton method is less constraining with respect to [18], since the
admissible region for the CoP is no more a priori fixed.

4.4 Multi-Contact Walking Simulations

The proposed approach is evaluated on a walking motion up and down stairs as
shown on Fig. 4.10, generated with parameters in Table 4.1, with the external
force at the CoM, generated by a hand support at two predefined moments.

Generated Motion

Fig.s 4.11(a) and 4.11(b) show how the presence of an additional hand support
during the steps up and down stairs significantly affects the motion of the CoM
in the frontal plane (x, z) and in its (x, y) acceleration. In absence of external
contacts, the weighted sum of o1, o2 and o3 is considered as cost function. This
cost naturally decreases when the external wrench is employed, since it represents
an additional degree of freedom for the OCP. Fig. 4.12 shows the corresponding
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Figure 4.10: Snapshots of a walking motion climbing up and down stairs, gen-
erated online with the proposed Nonlinear MPC scheme. The yellow rectangles
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Figure 4.11: Comparison between CoM motion with (blue line) and without
(dashed red line) additional hand support.
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Figure 4.13: Semi-log graph showing the convergence of the CoP and CoM tra-
jectories over the Newton iterations.
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Table 4.2: Weights for the different objectives.

Distance between cz and its reference w1 = 1

Distance between p and its reference w2 = 1

CoM jerk norm w3 = 10−5

External force norm w4 = 10−7

External torque norm w5 = 10−4

k

0.2 0.4 0.6 0.8 1

1 M
Σ
J

×10-3

4.9

5

5.1

5.2

5.3

Figure 4.14: Mean value of the objective function over the whole motion w.r.t. the
coefficient k. The objective function is impacted by the choice of the coefficient
k, by as much as 6%.

evolution of the norm of the external force fe and torque ñ during the four pre-
defined moments. Since a minimization of the norm of the wrench is performed,
higher weights, w4 and w5, on fe and ñ generate lower values of the resultant
wrench. High gains are chosen for the external torque, to reduce the rotational
motion around the CoM. Simulation tests with variable height of the stairs re-
veal that for higher stairs (20 cm or 30 cm) a lower value of w1 provides better
performances. The proposed weights wi are given in Table 4.2.

Fig. 4.13(a) and 4.13(b) depict the CoP and the CoM convergence tests re-
spectively, over one preview horizon. This picture shows that the Newton scheme
converges in few iterations. More interestingly, it is remarkable that the first iter-
ation already provides a very good approximate solution, only a few millimeters
away from the optimum. But in order to use safely such an approximate solution,
the nonlinear constraint (4.20) has to be satisfied.

Nonlinear Constraint and Polytopic Uncertainty

Fig. 4.15 shows how the CoP is always kept inside the quadrilateral defined by the
four extreme points p(ζ

1
, ζ

2
), p(ζ

1
, ζ2), p(ζ1, ζ2) and p(ζ1, ζ2), which are all kept

inside the support polygon S(sxyi ). Four different computations are shown, with
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a range of polytopic uncertainty {µ1, µ2} multiplied by four different coefficients,
k ∈ {1, 0.6, 0.4, 0.2}. Notice that the choice of a larger range leads to much
more conservative constraints. It is remarkable that p(ζ

1
, ζ

2
), p(ζ

1
, ζ2), p(ζ1, ζ2)

and p(ζ1, ζ2), vary within the preview horizon, since the boundary values of ζ1
and ζ2 are iteratively adapted. Therefore, the smaller quadrilaterals, showed in
the bottom picture of Fig. 4.15, represent the less constraining case, since their
four extreme points have more room to be placed inside the footprint by the
optimization algorithm.

Fig. 4.14 shows how this more conservative constraint affects the value that
can be reached for the objective function. It appears clearly that a smaller range
leads to better results.

Note that the range of values for the polytopic uncertainties was chosen em-
pirically, as inappropriate values can quickly lead to infeasible problems, what
would require a relaxation of constraints.

Computational Efficiency

Solutions to the linear approximate models are computed with qpOASES [37],
which is an open-source C++ implementation of the online active set strategy.
Without using hotstart, on a relatively slow Intel Core i5-4200U @ 1.60GHz,
the solutions are obtained in approximately 8 ms (average time over the whole
trajectory generation). This result can certainly be improved significantly with
hotstart. As a comparison, the computation time reported for a similar problem
in [24] is 5.5 s for 85 iterations, which gives approximately 65 ms for each iteration,
on a much faster CPU. Not only is this Newton scheme much safer, by providing
iterates which are always feasible, it appears also to be an order of magnitude
more efficient in terms of computation time.

4.4.1 Whole Body Motion

The proposed MPC scheme has been validated also considering whole body mo-
tion (see Fig. 4.16). Simulations are performed with an HRP-4 robot [56], which
is controlled using the standard inverse dynamics approach [39, 97]. The pro-
posed whole body motion controller employs PD-controllers to track reference
trajectory of the CoM produced by MPC, and trajectories of the feet and hands
generated using cubic polynomials. Positions of the hands are controlled only dur-
ing the short intervals when they are approaching the contact points – during the
rest of the simulation the reference configuration of the arms is maintained with
PD-controllers instead. The whole body motion controller obeys contact friction
constraints and constraints due to dynamics and kinematics of the robot. These
constraints include the joint torque limits, which, however, are never reached in
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Figure 4.15: The trajectory of the CoP (blue line) is always kept inside the
quadrilateral, which is kept inside the support polygon S(sxyi ) (black rectangle).
The range of polytopic uncertainty µ1 and µ2 is multiplied here by four different
values of the coefficient k, from top to bottom: 1, 0.6, 0.4, 0.2.
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Figure 4.16: HRP-4 humanoid robot walking up stairs with hands support. 3D
whole body motion generated online with the proposed NMPC scheme.

these simulations. Additionally, the generation of the reference external wrench,
we ∈ R6, by hand contacts is enforced using an equality constraint

we = ΣiT eiwsi
, (4.35)

where T ei is a wrench transformation matrix [78], and wsi ∈ R6 is the wrench at
the i-th contact point. In order to address discrepancy between the frequency of
the whole body motion control and the MPC, linear interpolation of the reference
values of the external wrench is employed.

The simulations can be visualized in a video4, which consists of four parts:
the first two illustrate walking on a flat ground, while the last two demonstrate
walking up and down stairs. Due to the fact that the reference external wrench
acts directly on the CoM, there is a relative freedom in choosing the contact
configurations. In order to demonstrate this the reference external wrench uses a
single hand contact in the first and third parts of the video, while in the second
and fourth parts exactly the same external wrenches is produced using two hand
contacts.

In the case of walking on a flat ground, tuning of the MPC and whole body
motion controller amounts to finding kinematically feasible contact point posi-
tions, which can be relatively easy parameterized with the CoM position. More

4https://youtu.be/NSDiSRPnxZ0
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difficulties are experienced while working on walking on stairs application. Most
of them are related to infeasibility of the reference trajectories due to the me-
chanical limits of the knee (going up) and ankle (going down) joints. The latter
appears to be a particularly severe limitation, which makes walking downstairs
with flat feet a much more challenging task than going upstairs. The issues
with the joint limits are alleviated by tuning the swing foot trajectories and the
constraint on the maximal distance between the feet and the CoM, in addition,
relatively low height of the steps (8 cm) is considered for downstairs climbing,
while higher height (15 cm) is considered for upstairs climbing.

Joint torques with and without hand contacts are evaluated to measure pos-
sible reduction in energy consumption because of weight distribution. In case
of slower motion, and including an additional objective in the cost function to
increase the vertical component of the external force, the average of joint torques
decreases, but high peaks appear. Even if the result is not strongly reliable be-
cause further tuning is required, these peaks are reduced with the integration of
hands support.

4.5 Conclusion

This Chapter initially introduces the analogies between dynamic nonprehensile
manipulation and the generation of multi-contact locomotion tasks for a hu-
manoid robot, and motivates the investigation of motion planning and control
techniques for multi-contact locomotion, stating the limitations of the existing ap-
proaches. The model predictive control is presented as a state of the art approach
for the generation of walking patterns satisfying the condition of dynamic balance.
Subsequently, building on the insight that variations in the vertical direction of
motion are much less relevant than variations in the posterior-anterior directions
for a walking task, a NMPC approach is proposed to generate a reference motion
for a humanoid robot walking upstairs and downstairs while interacting with the
environment with the hand contacts. With this purpose, a novel expression of
the dynamic feasibility constraint is proposed, including variable height of the
CoM, and modeling the external wrench due to the hand contacts with the addi-
tional supports. The designed NMPC has been assimilated to a Newton method
ensuring dynamic feasibility at each iteration.

Drawing a conclusion, in this Chapter, following the same procedure as in [18],
and constraining each iteration of the Newton method to fall within the limits
of the specified polytopic uncertainty, the linear approximation of the NMPC is
made robust to polytopic uncertainties. A specific form of the dynamic feasibility
constraint is used, where a CoP is introduced for foot contacts on the ground,
while other external forces are considered as a generic force and torque acting on
the CoM, as proposed in [3]. In this way, this approach works as well for different

107



multi-contact situations, since the generated external wrench is not dependent
on the specific contact configuration. The simulation of a walking motion up
and down stairs with additional hand support and a critical discussion of the
numerical results demonstrate the applicability of the method in case of whole
body motion generation, with remarkable computational efficiency.
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Chapter 5

Conclusion

5.1 Main Contribution

The main results on this Thesis are related to dynamic nonprehensile manipu-
lation and legged locomotion tasks. In particular, new strategies for control of
nonprehensile planar rolling manipulation, motion planning of 3D impact manip-
ulation, and motion planning of multi-contact walking tasks, are proposed.

• Regarding control of nonprehensile planar rolling manipulation, the contri-
bution is related to both modeling and control. A novel IDA-PBC for planar
rolling manipulation tasks between two arbitrary shapes, considering both
symmetric and asymmetric planar rolling manipulation, is designed. This
approach differs from the standard feedback linearization where a linear
dynamics is imposed at the expense of canceling all the nonlinear dynamics
of the system. In addition, a systematic approach to simplify the IDA-PBC
design is presented, transforming the set of PDEs resulting from the match-
ing conditions in a set of algebraic equations. The control method has been
applied to separable and non-separable Hamiltonian systems. Numerical
tests confirm the validity of the control approach.

• A framework to deal with motion planning of impact manipulation is pro-
posed in this manuscript. Firstly, the batting primitive performed by a
semi-humanoid robot is here considered. The proposed nonlinear estimation
techniques improve the control accuracy, while dealing with the real-time
constraints. A coordinate-free, smooth, optimal motion plan, that mini-
mizes the acceleration functional of the robot end-effector, is proposed. The
batting paths are tracked by a semi-humanoid robot through a closed-loop
kinematic inversion. Numerical tests are implemented to compare differ-
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ent metrics to define the optimal impact configuration of the ball and the
paddle system. Furthermore, the batting primitive is exploited to generate
the dual-hand ball juggling task. An optimal planner for this nonprehensile
dual-hand manipulation is given by a sequence of nonlinear minimum least
squares problems. The approach is validated in the Matlab environment in
connection with the V-Rep graphic simulation platform.

• Finally, for generating walking motions in multi-contact situations, a New-
ton method providing feasible iterates for a nonlinear MPC scheme is de-
signed. It is based on a linear approximation which is made robust to
polytopic uncertainties, constraining each iteration of the Newton method
to fall within the limits of these polytopic uncertainties. The simulation of
a walking motion up and down stairs with additional hand support demon-
strates the applicability of the method, with remarkable computational ef-
ficiency. This approach works as well for different multi-contact situations,
since the generated external wrench is not dependent on the specific contact
configuration.

5.2 Future Research

Several ideas to improve the obtained results, and to investigate future lines of
research, are detailed in the following.

• The proposed simplified IDA-PBC approach for planar rolling manipula-
tion still presents a bottleneck related to the solution of the kinetic energy
matching equation, that is based on the work [93]. An analytic analysis
of the singular situation, that can appear in the solution of the kinetic en-
ergy matching equation, might lead to a more general result than the one
obtained managing numerically such singularity. Furthermore, an exper-
imental validation of the approach is necessary to confirm the validity of
the proposed modeling and control methodology. As future work, also the
application of the approach to other planar rolling tasks, like the butterfly
task [71, 25, 113], might be investigated.

• Regarding motion planning for nonprehensile impact manipulation, as fu-
ture work, the approach should be experimentally validated on a physical
robotic prototype. Besides, a number of juggling patterns could be imple-
mented exploiting again the batting primitive. The framework is now able
to juggle by throwing with one ball, but it should be straightforward to add
a second ball, assuming to have a more extended field of view.
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• About the nonlinear MPC approach for multi-contact walking tasks, the
proposed method relies on predefined footsteps and hand supports. Au-
tomatic footstep placement on horizontal surfaces could be included easily
using the methods introduced in [48], but more complex cases of uneven
ground and multi-contact situations require much more advanced planning
methods [11, 29, 35, 117]. Nevertheless, the next step is to evaluate how a
lexicographic approach could be introduced, to automatically decide when
it is necessary to use the additional hand support, as in [109].

An interesting research line that is gaining more and more interest in the
robotic research community is the investigation of a framework that may build
a bridge between walking gaits and some other robotic field, such as object ma-
nipulation [10, 14, 19, 85].

One of the concept that underpin the research flow developed in this The-
sis is the identification of connections between nonprehensile manipulation and
dynamic walking. Both of them intrinsically involve: fast and hybrid dynam-
ics, multiple non-coplanar contacts, and interaction between complex shapes. As
future research, the investigation of possible mathematical mappings between dy-
namic nonprehensile manipulation and multi-contact dynamic walking might help
in reusing some of the theory already developed within the robotic manipulation
field into the robotic walking scenario, and vice-versa.

The proposed IDA-PBC approach, for example, could be applied to deal with
the dynamic walking tasks. The control technique could be applied to the planar
system which resembles the physics of walking, i.e. the inverted pendulum. Sim-
ilarly, the proposed nonlinear MPC approach could be further investigated for
dynamic manipulation tasks, conceiving the constrained optimal control prob-
lem that generates kinematically and dynamically feasible, robust, and smooth
motions, in a task-specific way.
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